331 research outputs found
Examining c-di-GMP and possible quorum sensing regulation in Pseudomonas fluorescens SBW25:links between intra and inter-cellular regulation benefits community cooperative activities such as biofilm formation
Bacterial success in colonizing complex environments requires individual response to micro-scale conditions as well as community-level cooperation to produce large-scale structures such as biofilms. Connecting individual and community responses could be achieved by linking the intracellular sensory and regulatory systems mediated by bis-(3β²-5β²)-cyclic dimeric guanosine monophosphate (c-di-GMP) and other compounds of individuals with intercellular quorum sensing (QS) regulation controlling populations. There is growing evidence to suggest that biofilm formation by many pseudomonads is regulated by both intra and intercellular systems, though in the case of the model Pseudomonas fluorescens SBW25 Wrinkly Spreader in which mutations increasing c-di-GMP levels result in the production of a robust cellulose-based air-liquid interface biofilm, no evidence for the involvement of QS regulation has been reported. However, our recent review of the P. fluorescens SBW25 genome has identified a potential QS regulatory pathway and other QSβassociated genes linked to c-di-GMP homeostasis, and QS signal molecules have also been identified in culture supernatants. These findings suggest a possible link between c-di-GMP and QS regulation in P. fluorescens SBW25 which might allow a more sophisticated and responsive control of cellulose production and biofilm formation when colonising the soil and plant-associated environments P. fluorescens SBW25 normally inhabits.ΠΠ½Π°Π»ΠΈΠ· Ρ-Π΄ΠΈ-ΠΠΠ€ ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ³ΠΎ ΡΡΠ²ΡΡΠ²Π° ΠΊΠ²ΠΎΡΡΠΌΠ° Ρ Pseudomonas fluorescens SBW 25: ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ Π²Π½ΡΡΡΠΈ ΠΈ ΠΌΠ΅ΠΆΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ ΡΠ΅Π³ΡΠ»ΡΡΠΈΠ΅ΠΉ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΠ΅Ρ ΠΊΠΎΠΎΠΏΠ΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠΌΡ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ Π² ΡΠΎΠΎΠ±ΡΠ΅ΡΡΠ²Π΅ ΠΈ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π±ΠΈΠΎΠΏΠ»ΡΠ½ΠΊΠΈΠ£ΡΠΏΠ΅ΡΠ½ΠΎΡΡΡ Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠ·Π°ΡΠΈΠΈ ΡΠ»ΠΎΠΆΠ½ΡΡ
ΡΠΊΠΎΠ½ΠΈΡ ΡΡΠ΅Π±ΡΠ΅Ρ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠ²Π΅ΡΠ° Π½Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΡΠ»ΠΎΠ²ΠΈΠΉ Π½Π° ΠΌΠΈΠΊΡΠΎΡΡΠΎΠ²Π½Π΅ ΡΠ°Π²Π½ΠΎ ΠΊΠ°ΠΊ ΠΈ ΠΊΠΎΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ Π½Π° ΡΡΠΎΠ²Π½Π΅ ΡΠΎΠΎΠ±ΡΠ΅ΡΡΠ²Π° Π΄Π»Ρ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ ΡΠ°ΠΊΠΈΡ
ΠΊΡΡΠΏΠ½ΠΎ ΠΌΠ°ΡΡΡΠ°Π±Π½ΡΡ
ΡΡΡΡΠΊΡΡΡ ΠΊΠ°ΠΊ Π±ΠΈΠΎΠΏΠ»ΡΠ½ΠΊΠΈ. ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠΈΡ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΡΡ
ΠΎΡΠ²Π΅Ρ ΠΎΠ² ΠΈ ΠΎΡΠ²Π΅ΡΠΎΠ² ΡΠΎΠΎΠ±ΡΠ΅ΡΡΠ²Π° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π΄ΠΎΡΡΠΈΠ³Π½ΡΡΠ° ΠΏΡΡΠ΅ΠΌ ΡΠ²ΡΠ·ΡΠ²Π°Π½ΠΈΡ Π²Π½ΡΡΡΠΈΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ
ΡΠ΅Π½ΡΠΎΡΠ½ΡΡ
ΠΈ ΡΠ΅Π³ΡΠ»ΡΡΠΎΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ, ΠΎΠΏΠΎΡΡΠ΅Π΄ΡΠ΅ΠΌΡΡ
Π±ΠΈΡ-(3',5')-ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΌ Π΄ΠΈΠΌΠ΅ΡΠ½ΡΠΌ Π³ΡΠ°Π½ΠΎΠ·ΠΈΠ½ΠΌΠΎΠ½ΠΎΡΠΎΡΡΠ°ΡΠΎΠΌ (Ρ-Π΄ΠΈ-ΠΠΠ€) ΠΈ Π΄ΡΡΠ³ΠΈΠΌΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡΠΌΠΈ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΡΠΌΠΎΠ² Ρ ΠΌΠ΅ΠΆΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ ΡΠ΅Π³ΡΠ»ΡΡΠΈΠ΅ΠΉ - ΡΡΠ²ΡΡΠ²ΠΎΠΌ ΠΊΠ²ΠΎΡΡΠΌΠ° (Π§Π), ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΡΡΡΠ΅ΠΌ ΠΏΠΎΠΏΡΠ»ΡΡΠΈ Ρ. ΠΠ°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°Π΅ΡΡΡ Π²ΡΡ Π±ΠΎΠ»ΡΡΠ΅ Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ² ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π±ΠΈΠΎΠΏΠ»Π΅Π½ΠΊΠΈ ΠΌΠ½ΠΎΠ³ΠΈΠΌΠΈ ΠΏΡΠ΅Π²Π΄ΠΎΠΌΠΎΠ½Π°Π΄Π°ΠΌΠΈ ΡΠ΅Π³ΡΠ»ΠΈΡΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ Π²Π½ΡΡΡΠΈ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΠΌΠΈ, ΡΠ°ΠΊ ΠΈ ΠΌΠ΅ΠΆ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΠΌΠΈ ΡΠ΅Π³ΡΠ»ΡΡΠΎΡΠ½ΡΠΌΠΈ ΡΠΈΡΡΠ΅ΠΌΠ°ΠΌΠΈ, Ρ
ΠΎΡΡ Π² ΡΠ»ΡΡΠ°Π΅ ΠΌΠΎΠ΄Π΅Π»ΡΠ½ΠΎΠΉ Pseudomonas fluorescens SBW25 Wrinkly Spreader, Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΌΡΡΠ°ΡΠΈΠΈ, ΠΏΠΎΠ²ΡΡΠ°ΡΡ ΠΈΠ΅ ΡΡΠΎΠ²Π½ΠΈ Ρ-Π΄ΠΈ-ΠΠΠ€, ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡ ΠΊ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΠΏΡΠΎΡΠ½ΠΎΠΉ ΡΠ΅Π»Π»ΡΠ»ΠΎΠ·Π½ΠΎΠΉ Π±ΠΈΠΎΠΏΠ»ΡΠ½ΠΊΠΈ Π½Π° Π³ΡΠ°Π½ΠΈΡΠ΅ ΡΠ°Π·Π΄Π΅Π»Π° ΡΠ°Π· Π²ΠΎΠ·Π΄ΡΡ
-ΠΆΠΈΠ΄ΠΊΠΎΡΡΡ, Π½Π΅ Π±ΡΠ»ΠΎ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ Π½ΠΈ ΠΊΠ° ΠΊΠΎΠ³ΠΎ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²Π° Π²ΠΎΠ²Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²ΠΎΡΡΠΌ-Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΡΠ΅Π³ΡΠ»ΡΡΠΈΠΈ. ΠΠ΄Π½Π°ΠΊΠΎ Π½Π°Ρ Π½Π΅Π΄Π°Π²Π½ΠΈΠΉ ΠΎΠ±Π·ΠΎΡ Π³Π΅Π½ΠΎΠΌΠ° P. fluorescens SBW25 Π²ΡΡΠ²ΠΈΠ» ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠΉ Π§Π-Π·Π°Π²ΠΈΡΠΈΠΌΡΠΉ ΡΠ΅Π³ΡΠ»ΡΡΠΎΡΠ½ΡΠΉ ΠΏΡ ΡΡ ΠΈ Π΄ΡΡΠ³ΠΈΠ΅ Π§Π-Π·Π°Π²ΠΈΡΠΈΠΌΡΠ΅ Π³Π΅Π½Ρ, ΡΠ²ΡΠ·Π°Π½Π½ΡΠ΅ Ρ Π³ΠΎΠΌΠ΅ΠΎΡΡΠ°Π·ΠΎΠΌ Ρ-Π΄ΠΈ-ΠΠΠ€, Π° ΠΌΠΎΠ»Π΅ΠΊΡΠ»Ρ Π§Π-ΡΠΈΠ³Π½Π°Π»ΠΈΠ½Π³Π° Π±ΡΠ»ΠΈ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Ρ Π² ΠΊΡΠ»ΡΡΡΡΠ΅. ΠΡΠΈ Π΄Π°Π½Π½ΡΠ΅ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡ ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠΉ ΡΠ²ΡΠ·ΠΈ ΠΌΠ΅ΠΆΠ΄Ρ Ρ-Π΄ΠΈ-ΠΠΠ€-ΡΠ΅Π³ΡΠ»ΡΡΠΈΠ΅ΠΉ ΠΈ Π§Π Ρ P. fluorescens SBW25, ΡΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π±ΠΎΠ»Π΅Π΅ ΡΠ»ΠΎΠΆΠ½ΡΠΉ ΠΈ Π³ΠΈΠ±ΠΊΠΈΠΉ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ Π½Π°Π΄ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠ΅ΠΉ ΡΠ΅Π»Π»ΡΠ»ΠΎΠ·Ρ ΠΈ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈ Π΅ΠΌ Π±ΠΈΠΎΠΏΠ»Π΅Π½ΠΊΠΈ ΠΏΡΠΈ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΠΎΡΠ² ΠΈ ΡΠΊΠΎΠ½ΠΈΡ, aΡΡΠΎΡΠΈΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Ρ ΡΠ°ΡΡΠ΅Π½ΠΈΡΠΌ ΠΈ, - Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΌΠΈ ΡΡΠ΅Π΄Π°ΠΌΠΈ ΠΎΠ±ΠΈΡΠ°Π½ΠΈΡ P. fluorescens SBW25
Measurement of the temperature dependence of pulse lengths in an n-type germanium detector
The temperature dependence of the pulse length was measured for an 18-fold
segmented n-type germanium detector in the temperature range of 77-120 K. The
interactions of 122 keV photons originating from a Europium-152 source were
selected and pulses as observed on the core and segment electrodes were
studied. In both cases, the temperature dependence can be well described by a
Boltzmann-like ansatz.Comment: 17 pages, 2 tables, 13 figures, published in EPJ A
Signal recognition efficiencies of artificial neural-network pulse-shape discrimination in HPGe -decay searches
A pulse-shape discrimination method based on artificial neural networks was
applied to pulses simulated for different background, signal and signal-like
interactions inside a germanium detector. The simulated pulses were used to
investigate variations of efficiencies as a function of used training set. It
is verified that neural networks are well-suited to identify background pulses
in true-coaxial high-purity germanium detectors. The systematic uncertainty on
the signal recognition efficiency derived using signal-like evaluation samples
from calibration measurements is estimated to be 5\%. This uncertainty is due
to differences between signal and calibration samples
The role of technology in education and learning outcomes
The article deals with the role of technology in education and learning outcomes
Analysis of the applicability of methods for predicting and assessing accidents at conflict sites in the transportation network and prospects for their development
Accident rate is one of the most significant losses in road traffic, as it affects each of the road users. Therefore, in order to reduce its level, it is necessary to develop a modern method of accident prediction, which would allow to accurately estimate the number of accidents and the severity of consequences not only by experimental data and survey results, but also by modelling at the decision-making stage. Such a method is the method of conflict situations, but to date it is characterized by low accuracy of prediction, not applicable for practical use, as well as the severity of obtaining (collection and analysis) of raw data and lack of automation of the decision-making process to select the optimal measure by the method of conflict situations. In the article the analysis of existing methods of accident forecasting, as sessment of their applicability at different stages of decision-making, as well as further prospects and directions of improvement of the method of conflict situations for the purpose of its applicability in the practice of traffic management for the purpose of optimizing its options and modes of regulation are determined
The MGDO software library for data analysis in Ge neutrinoless double-beta decay experiments
The GERDA and Majorana experiments will search for neutrinoless double-beta
decay of germanium-76 using isotopically enriched high-purity germanium
detectors. Although the experiments differ in conceptual design, they share
many aspects in common, and in particular will employ similar data analysis
techniques. The collaborations are jointly developing a C++ software library,
MGDO, which contains a set of data objects and interfaces to encapsulate, store
and manage physical quantities of interest, such as waveforms and high-purity
germanium detector geometries. These data objects define a common format for
persistent data, whether it is generated by Monte Carlo simulations or an
experimental apparatus, to reduce code duplication and to ease the exchange of
information between detector systems. MGDO also includes general-purpose
analysis tools that can be used for the processing of measured or simulated
digital signals. The MGDO design is based on the Object-Oriented programming
paradigm and is very flexible, allowing for easy extension and customization of
the components. The tools provided by the MGDO libraries are used by both GERDA
and Majorana.Comment: 4 pages, 1 figure, proceedings for TAUP201
- β¦