44,416 research outputs found

    Recent advances in neutrino astrophysics

    Full text link
    Neutrinos are produced by a variety of sources that comprise our Sun, explosive environments such as core-collapse supernovae, the Earth and the Early Universe. The precise origin of the recently discovered ultra-high energy neutrinos is to be determined yet. These weakly interacting particles give us information on their sources, although the neutrino fluxes can be modified when neutrinos traverse an astrophysical environment. Here we highlight recent advances in neutrino astrophysics and emphasise the important progress in our understanding of neutrino flavour conversion in media.Comment: Proceedings for the Symposium "Frontiers of Fundamental Physics 2014", July 15-18, Marseille, 8 pages, 1 figur

    Results from cosmics and first LHC beam with the ALICE HMPID detector

    Full text link
    The ALICE HMPID (High Momentum Particle IDentification) detector has been designed to identify charged pions and kaons in the range 1 < p < 3 GeV/c and protons in the range 1.5 < p < 5 GeV/c. It consists of seven identical proximity focusing RICH (Ring Imaging Cherenkov) counters, covering in total 11 m2, which exploit large area MWPC equipped with CsI photocathodes for Cherenkov light imaging emitted in a liquid C6F14 radiator. The ALICE detector has been widely commissioned using cosmics and LHC beam from December 2007 until October 2008. During the cosmics data taking the HMPID detector collected a large set of data, using mainly the trigger provided by the TOF detector. We present here preliminary results of detector alignment using TPC tracking. The HMPID could be operated in a stable way, at a safe HV setting, also during LHC beam injection and circulation tests, when a very large occupancy (up to 50%) was achieved. Resulting gain mapping and overall detector performance will also be discussed.Comment: 4 pages, 5 figures - To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennessee.

    Theoretical developments in supernova neutrino physics : mass corrections and pairing correlators

    Full text link
    We highlight the progress in our understanding of how neutrinos change their flavor in astrophysical environments, in particular effects from the neutrino self-interaction. We emphasize extended descriptions of neutrino propagation in massive stars that are beyond the current one based on the mean-field approximation. The extended equations include, in particular, corrections from (anti)neutrino-(anti)neutrino pairing correlations and from the neutrino mass. We underline open issues and challenges.Comment: 5 pages, Proceedings for the TAUP 2015 conferenc

    UNH-IOL Tech Lab Celebrates 20th Anniversary

    Get PDF

    Beta-beams

    Full text link
    Beta-beams is a new concept for the production of intense and pure neutrino beams. It is at the basis of a proposed neutrino facility, whose main goal is to explore the possible existence of CP violation in the lepton sector. Here we briefly review the original scenario and the low energy beta-beam. This option would offer a unique opportunity to perform neutrino interaction studies of interest for particle physics, astrophysics and nuclear physics. Other proposed scenarios for the search of CP violation are mentioned.Comment: 8 pages, 1 table, 5 figures, Proceedings of "13th Lomonosov Conference on Elementary Particle Physics

    Bridge

    Get PDF

    Neutrino flavour conversion and supernovae

    Full text link
    We summarize the recent developments in our understanding of neutrino flavour conversion in core-collapse supernovae and discuss open questions.Comment: Proceedings to the "Eleventh Conference on the Intersections of Particle and Nuclear Physics (CIPANP2012)", May 29 to June 3, Florida, 8 pages, 2 figure

    Longterm Influence of Inertia on the Diffusion of a Brownian Particle

    Get PDF
    We demonstrate experimentally that a Brownian particle is subject to inertial effects at long time scales. By using a blinking optical tweezers, we extend the range of previous experiments by several orders of magnitude up to a few seconds. The measured mean square displacement of a freely diffusing Brownian particle in a liquid shows a deviation from the Einstein-Smoluchowsky theory that diverges with time. These results are consistent with a generalized theory that takes into account not only the particle inertia but also the inertia of the fluid surrounding the particle. This can lead to a bias in the estimation of the diffusion coefficient from finite-time measurements. We show that the decay of the relative error is polynomial and not exponential and, therefore, can have significant effects at time scales relevant for experiments.Comment: 5 pages, 4 figure

    Neutrino astrophysics : recent advances and open issues

    Full text link
    We highlight recent advances in neutrino astrophysics, the open issues and the interplay with neutrino properties. We emphasize the important progress in our understanding of neutrino flavor conversion in media. We discuss the case of solar neutrinos, of core-collapse supernova neutrinos and of SN1987A, and of the recently discovered ultra-high energy neutrinos whose origin is to be determined.Comment: 14 pages, 8 figures, Proceedings for "DISCRETE 2014" Symposiu

    Supernova Relic Electron Neutrinos and anti-Neutrinos in future Large-scale Observatories

    Full text link
    We investigate the signal from supernova relic neutrinos in future large scale observatories, such as MEMPHYS (UNO, Hyper-K), LENA and GLACIER, at present under study. We discuss that complementary information might be gained from the observation of supernova relic electron anti-neutrinos and neutrinos using the scattering on protons on one hand, and on nuclei such as oxygen, carbon or argon on the other hand. When determining the relic neutrino fluxes we also include, for the first time, the coupling of the neutrino magnetic moment to magnetic fields within the core-collapse supernova. We present numerical results on both the relic electron neutrino and anti-neutrino fluxes and on the number of events for electron neutrinos on carbon, oxygen and argon, as well as electron anti-neutrinos on protons, for various oscillation scenarios. The observation of supernova relic neutrinos might provide us with unique information on core-collapse supernova explosions, on the star formation history and on neutrino properties, that still remain unknown.Comment: 15 pages, 13 figures, 7 table
    corecore