141 research outputs found

    Binding mechanism of the model charged dye carboxyfluorescein to hyaluronan/polylysine multilayers

    Get PDF
    Biopolymer-based multilayers become more and more attractive due to the vast span of biological application they can be used for, e.g., implant coatings, cell culture supports, scaffolds. Multilayers have demonstrated superior capability to store enormous amounts of small charged molecules, such as drugs, and release them in a controlled manner; however, the binding mechanism for drug loading into the multilayers is still poorly understood. Here we focus on this mechanism using model hyaluronan/polylysine (HA/PLL) multilayers and a model charged dye, carboxyfluorescein (CF). We found that CF reaches a concentration of 13 mM in the multilayers that by far exceeds its solubility in water. The high loading is not related to the aggregation of CF in the multilayers. In the multilayers, CF molecules bind to free amino groups of PLL; however, intermolecular CF–CF interactions also play a role and (i) endow the binding with a cooperative nature and (ii) result in polyadsorption of CF molecules, as proven by fitting of the adsorption isotherm using the BET model. Analysis of CF mobility in the multilayers by fluorescence recovery after photobleaching has revealed that CF diffusion in the multilayers is likely a result of both jumping of CF molecules from one amino group to another and movement, together with a PLL chain being bound to it. We believe that this study may help in the design of tailor-made multilayers that act as advanced drug delivery platfor

    Comparative study of cytotoxicity of ferromagnetic nanoparticles and magnetitecontaining polyelectrolyte microcapsules

    Get PDF
    The work was supported by Ministry of Education and Science of the Russian Federation as part of the State task for National Research Mordovia State University, project No. 2952 and the Government of the Russian Federation (grant №14.Z50.31.0004 to support scientific research projects implemented under the supervision of leading scientists

    Effect of cholesterol on the dipole potential of lipid membranes

    Get PDF
    The membrane dipole potential, ψd, is an electrical potential difference with a value typically in the range 150 – 350 mV (positive in the membrane interior) which is located in the lipid headgroup region of the membrane, between the linkage of the hydrocarbon chains to the phospholipid glycerol backbone and the adjacent aqueous solution. At its physiological level in animal plasma membranes (up to 50 mol%), cholesterol makes a significant contribution to ψd of approximately 65 mV; the rest arising from other lipid components of the membrane, in particular phospholipids. Via its effect on ψd, cholesterol may modulate the activity of membrane proteins. This could occur through preferential stabilization of protein conformational states. Based on its effect on ψd, cholesterol would be expected to favour protein conformations associated with a small local hydrophobic membrane thickness. Via its membrane condensing effect, which also produces an increase in ψd, cholesterol could further modulate interactions of polybasic cytoplasmic extensions of membrane proteins, in particular P-type ATPases, with anionic lipid headgroups on the membrane surface, thus leading to enhanced conformational stabilization effects and changes to ion pumping activity.Australian Research Counci

    pH- and salt-mediated response of layer-by-layer assembled PSS/PAH microcapsules: fusion and polymer exchange

    No full text
    We have studied the pH-and salt-mediated response of matrix-type polyelectrolyte microcapsules. The capsules were prepared by layer-by-layer (LbL) adsorption on decomposable CaCO3 cores using model polyelectrolytes, namely poly-styrenesulfonic acid (PSS) and poly(allylamine hydrochloride) (PAH). Salt-mediated LbL-made microcapsule fusion has been reported recently with a different polycation (R. Zhang, O. Kreft, A. Skirtach, H. Mohwald and G. Sukhorukov, Soft Matter, 2010, 6, 4742-4747) resulting in merging of the capsule's content and formation of anisotropic "Janus-like'' capsules indicating no polymer exchange between the capsules. Here we have studied PAH/PSS capsule behavior as a function of pH and salt concentration. Salt (NaCl) does not induce any changes in the capsules up to saturation concentration (6.1 M). In contrast, several sequential processes have been identified for capsules in [HCl] > 0.1 M: (i) shrinkage due to polymer network annealing, (ii) transformation from matrix-type to shell-type capsules due to oscillating inflating-deflating cycles caused by CO2 formation, and (iii) collapse. The processes depend on acid concentration and the number of layers. If the capsules contact each other, there is an exchange of polymer molecules followed by fusion. The polymer exchange depends on the outermost layer that determines the overall capsule charge. Exchange is enhanced for capsules of the same outermost layer and can be caused by charge redistribution in the capsules at low pH (the negative charge of PSS is reduced (pK(a) 1) and the positive charge of PAH is in excess). Control over polymer exchange between the capsules is key in order to design capsules as well as to understand and to trigger fusion. We also show that the observed processes are not reversible and can be stopped at any time by replacement of acid with water. Stable gas-filled capsules can be produced by this method upon transformation from matrix to shell-type capsules
    • 

    corecore