42 research outputs found

    Structural and superelastic properties of Fe–Mn–Al–Ni shape memory alloy sheets produced on industrial process routes by hot rolling

    Get PDF
    In the present study the structural and functional properties of Fe–Mn–Al–Ni shape memory alloy sheets produced on an industrial process route focusing on hot rolling were investigated. The as-processed condition is characterized by a high fraction of the non-transforming γ-phase, which ensures good workability, but is associated with poor superelasticity. The alloy shows good structural properties with a yield strength of about 600 MPa, which is well above the usual transformation stress related to the martensitic phase transformation for the investigated alloy composition. After solution annealing, a microstructure showing no preferred orientation being characterized by distinctly larger grains is present. The results obtained reveal that the previous thermo-mechanical processing had no impact on the subsequent texture, however, provided a sufficient amount of driving force for abnormal grain growth. Imposed by a cyclic heat treatment, oligocrystalline structures with grain sizes above 10 mm can be achieved in the industrially processed material, which show superelastic properties similar to material processed in small batches in the laboratory

    Laser Powder Bed Fusion Processing of Fe-Mn-Al-Ni Shape Memory Alloy - On the Effect of Elevated Platform Temperatures

    Get PDF
    In order to overcome constraints related to crack formation during additive processing (laser powder bed fusion, L-BPF) of Fe-Mn-Al-Ni, the potential of high-temperature L-PBF processing was investigated in the present study. The effect of the process parameters on crack formation, grain structure, and phase distribution in the as-built condition, as well as in the course of cyclic heat treatment was examined by microstructural analysis. Optimized processing parameters were applied to fabricate cylindrical samples featuring a crack-free and columnar grained microstructure. In the course of cyclic heat treatment, abnormal grain growth (AGG) sets in, eventually promoting the evolution of a bamboo like microstructure. Testing under tensile load revealed a well-defined stress plateau and reversible strains of up to 4%

    In situ characterization of the functional degradation of a [001] orientated Fe–Mn–Al–Ni single crystal under compression using acoustic emission measurements

    Get PDF
    Acoustic emission (AE) measurements were conducted in situ during cyclic compressive loading on an [ 00 1 over line ] orientated single crystal of Fe-Mn-Al-Ni shape memory alloy to study functional degradation of its superelastic response. The acoustic investigations were corroborated by optical microscopy, employing video imaging, and transmission electron microscopy. The analysis of acoustic emissions recorded during repeated loading and unloading sessions revealed two categories of AE signals that are differed by their characteristics in time and frequency domains. These two distinct types of AE signals were related to two underlying mechanisms: (i) the nucleation and reverse transformation of stress-induced (twinned) martensite, and (ii) the lateral growth and shrinkage of one dominant martensite variant and related dislocation activities, respectively. In addition, an asymmetry in the AE activity during forward and reverse transformation during mechanical loading and unloading was detected. In particular, an unexpected high AE activity was observed during the superelastic unloading of martensitic microstructure from the point of maximum load/strain. This effect was attributed to the reverse transformation of small, tiny areas of martensite as well as to unpinning and annihilation effects related to dislocations. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500

    Get PDF
    Anthropogenic increases in atmospheric greenhouse gas concentrations are the main driver of current and future climate change. The integrated assessment community has quantified anthropogenic emissions for the shared socio-economic pathway (SSP) scenarios, each of which represents a different future socio-economic projection and political environment. Here, we provide the greenhouse gas concentrations for these SSP scenarios – using the reduced-complexity climate–carbon-cycle model MAGICC7.0. We extend historical, observationally based concentration data with SSP concentration projections from 2015 to 2500 for 43 greenhouse gases with monthly and latitudinal resolution. CO2 concentrations by 2100 range from 393 to 1135 ppm for the lowest (SSP1-1.9) and highest (SSP5-8.5) emission scenarios, respectively. We also provide the concentration extensions beyond 2100 based on assumptions regarding the trajectories of fossil fuels and land use change emissions, net negative emissions, and the fraction of non-CO2 emissions. By 2150, CO2 concentrations in the lowest emission scenario are approximately 350 ppm and approximately plateau at that level until 2500, whereas the highest fossil-fuel-driven scenario projects CO2 concentrations of 1737 ppm and reaches concentrations beyond 2000 ppm by 2250. We estimate that the share of CO2 in the total radiative forcing contribution of all considered 43 long-lived greenhouse gases increases from 66 % for the present day to roughly 68 % to 85 % by the time of maximum forcing in the 21st century. For this estimation, we updated simple radiative forcing parameterizations that reflect the Oslo Line-By-Line model results. In comparison to the representative concentration pathways (RCPs), the five main SSPs (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) are more evenly spaced and extend to lower 2100 radiative forcing and temperatures. Performing two pairs of six-member historical ensembles with CESM1.2.2, we estimate the effect on surface air temperatures of applying latitudinally and seasonally resolved GHG concentrations. We find that the ensemble differences in the March–April–May (MAM) season provide a regional warming in higher northern latitudes of up to 0.4 K over the historical period, latitudinally averaged of about 0.1 K, which we estimate to be comparable to the upper bound (∼5 % level) of natural variability. In comparison to the comparatively straight line of the last 2000 years, the greenhouse gas concentrations since the onset of the industrial period and this studies' projections over the next 100 to 500 years unequivocally depict a “hockey-stick” upwards shape. The SSP concentration time series derived in this study provide a harmonized set of input assumptions for long-term climate science analysis; they also provide an indication of the wide set of futures that societal developments and policy implementations can lead to – ranging from multiple degrees of future warming on the one side to approximately 1.5 ∘C warming on the other

    Thermische Prozessierung & funktionale Charakterisierung von Fe-Mn-Al-Ni-basierten Formgedächtnislegierungen

    No full text
    Zugleich: Dissertation, Universität Kassel, 202

    Electrochemical polarization behavior and superelastic properties of a Fe–Mn–Al–Ni–Cr shape memory alloy

    No full text
    Gefördert im Rahmen des Projekts DEALDeutsche Forschungsgemeinschaft. Grant Number: 44724756
    corecore