92 research outputs found

    Safety and Efficacy of the FRED Jr Flow Re-Direction Endoluminal Device for Intracranial Aneurysms: Retrospective Multicenter Experience With Emphasis on Midterm Results

    Get PDF
    Background and Purpose: Flow diversion is increasingly used as an endovascular treatment for intracranial aneurysms. In this retrospective multicenter study, we analyzed the safety and efficacy of the treatment of intracranial, unruptured, or previously treated but recanalized aneurysms using Flow Re-Direction Endoluminal Device (FRED) Jr with emphasis on midterm results. Materials and Methods: Clinical and radiological records of 150 patients harboring 159 aneurysms treated with FRED Jr at six centers between October 2014 and February 2020 were reviewed and consecutively included. Clinical outcome was measured by using the modified Rankin Scale (mRS). Anatomical results were assessed according to the O’Kelly-Marotta (OKM) scale and the Cekirge-Saatci Classification (CSC) scale. Results: The overall complication rate was 24/159 (16%). Thrombotic-ischemic events occurred in 18/159 treatments (11%). These resulted in long-term neurological sequelae in two patients (1%) with worsening from pre-treatment mRS 0–2 and mRS 4 after treatment. Complete or near-complete occlusion of the treated aneurysm according to the OKM scale was reached in 54% (85/158) at 6-month, in 68% (90/133) at 1-year, and in 83% (77/93) at 2-year follow-up, respectively. The rates of narrowing or occlusion of a vessel branch originating from the treated aneurysm according to the CSC scale were 11% (12/108) at 6-month, 20% (17/87) at 1-year, and 23% (13/57) at 2-year follow-up, respectively, with all cases being asymptomatic. Conclusions: In this retrospective multicenter study, FRED Jr was safe and effective in the midterm occlusion of cerebral aneurysms. Most importantly, it was associated with a high rate of good clinical outcome

    Specific CT 3D rendering of the treatment zone after Irreversible Electroporation (IRE) in a pig liver model: the “Chebyshev Center Concept” to define the maximum treatable tumor size

    Get PDF
    Background: Size and shape of the treatment zone after Irreversible electroporation (IRE) can be difficult to depict due to the use of multiple applicators with complex spatial configuration. Exact geometrical definition of the treatment zone, however, is mandatory for acute treatment control since incomplete tumor coverage results in limited oncological outcome. In this study, the “Chebyshev Center Concept” was introduced for CT 3d rendering to assess size and position of the maximum treatable tumor at a specific safety margin. Methods: In seven pig livers, three different IRE protocols were applied to create treatment zones of different size and shape: Protocol 1 (n = 5 IREs), Protocol 2 (n = 5 IREs), and Protocol 3 (n = 5 IREs). Contrast-enhanced CT was used to assess the treatment zones. Technique A consisted of a semi-automated software prototype for CT 3d rendering with the “Chebyshev Center Concept” implemented (the “Chebyshev Center” is the center of the largest inscribed sphere within the treatment zone) with automated definition of parameters for size, shape and position. Technique B consisted of standard CT 3d analysis with manual definition of the same parameters but position. Results: For Protocol 1 and 2, short diameter of the treatment zone and diameter of the largest inscribed sphere within the treatment zone were not significantly different between Technique A and B. For Protocol 3, short diameter of the treatment zone and diameter of the largest inscribed sphere within the treatment zone were significantly smaller for Technique A compared with Technique B (41.1 ± 13.1 mm versus 53.8 ± 1.1 mm and 39.0 ± 8.4 mm versus 53.8 ± 1.1 mm; p < 0.05 and p < 0.01). For Protocol 1, 2 and 3, sphericity of the treatment zone was significantly larger for Technique A compared with B. Conclusions: Regarding size and shape of the treatment zone after IRE, CT 3d rendering with the “Chebyshev Center Concept” implemented provides significantly different results compared with standard CT 3d analysis. Since the latter overestimates the size of the treatment zone, the “Chebyshev Center Concept” could be used for a more objective acute treatment control

    Advancements in the development on new liquid embolic agents for use in therapeutic embolisation

    Get PDF
    Liquid formulations have a well-established role in therapeutic embolisation of blood vessels with the widespread use of cyanoacrylate glues, precipitating polymer suspensions, sclerosing agents and viscous emulsions of oil and chemotherapeutic agents. There is currently an emerging market for next generation liquid embolics which aim to address some of the short-comings of the currently used products. These next generation systems use varying chemistries in their approach to formulate new systems including polymerising, precipitating and phase-transitioning mechanisms to form solidified masses in situ within the vasculature. Some of these emerging technologies have been developed to possess improved imaging properties such as inherent radiopacity, rather than relying on having to mixing with radiopaque materials such as tantalum powder and reduction of X-ray imaging artefacts (streaking). Others offer solvent-free formulations which gel on contact with blood thereby allowing precise control over gel formation during the embolisation process without the use of potentially toxic solvents. In this review, we discuss the role of liquid agents in therapeutic embolisation and the potential of emerging technologies under development for use in the next generation of embolics

    Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha

    Get PDF
    Wild-type Ralstonia eutropha H16 produces polyhydroxybutyrate (PHB) as an intracellular carbon storage material during nutrient stress in the presence of excess carbon. In this study, the excess carbon was redirected in engineered strains from PHB storage to the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can directly substitute for fossil-based fuels and be employed within the current infrastructure. Various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, were employed for the biosynthesis of isobutanol and 3-methyl-1-butanol. Production of these branched-chain alcohols was initiated during nitrogen or phosphorus limitation in the engineered R. eutropha. One mutant strain not only produced over 180 mg/L branched-chain alcohols in flask culture, but also was significantly more tolerant of isobutanol toxicity than wild-type R. eutropha. After the elimination of genes encoding three potential carbon sinks (ilvE, bkdAB, and aceE), the production titer improved to 270 mg/L isobutanol and 40 mg/L 3-methyl-1-butanol. Semicontinuous flask cultivation was utilized to minimize the toxicity caused by isobutanol while supplying cells with sufficient nutrients. Under this semicontinuous flask cultivation, the R. eutropha mutant grew and produced more than 14 g/L branched-chain alcohols over the duration of 50 days. These results demonstrate that R. eutropha carbon flux can be redirected from PHB to branched-chain alcohols and that engineered R. eutropha can be cultivated over prolonged periods of time for product biosynthesis.United States. Dept. of EnergyUnited States. Advanced Research Projects Agency-Energ

    Antibody-mediated procoagulant platelets in SARS-CoV-2-vaccination associated immune thrombotic thrombocytopenia

    Get PDF
    The COVID-19 pandemic has resulted in significant morbidity and mortality worldwide. To prevent severe infection, mass COVID-19 vaccination campaigns with several vaccine types are currently underway. We report pathological and immunological findings in 8 patients who developed vaccine-induced immune thrombotic thrombocytopenia (VITT) after administration of SARS-CoV-2 vaccine ChAdOx1 nCoV-19. We analyzed patient material using enzyme immune assays, flow cytometry and heparin-induced platelet aggregation assay and performed autopsies on two fatal cases. Eight patients (5 female, 3 male) with a median age of 41.5 years (range, 24 to 53) were referred to us with suspected thrombotic complications 6 to 20 days after ChAdOx1 nCoV-19 vaccination. All patients had thrombocytopenia at admission. Patients had a median platelet count of 46.5 x109/L (range, 8 to 92). Three had a fatal outcome and 5 were successfully treated. Autopsies showed arterial and venous thromboses in various organs and the occlusion of glomerular capillaries by hyaline thrombi. Sera from VITT patients contain high titer antibodies against platelet factor 4 (PF4) (OD 2.59±0.64). PF4 antibodies in VITT patients induced significant increase in procoagulant markers (P-selectin and phosphatidylserine externalization) compared to healthy volunteers and healthy vaccinated volunteers. The generation of procoagulant platelets was PF4 and heparin dependent. We demonstrate the contribution of antibody-mediated platelet activation in the pathogenesis of VITT

    Glue, Onyx, Squid or PHIL? Liquid Embolic Agents for the Embolization of Cerebral Arteriovenous Malformations and Dural Arteriovenous Fistulas

    No full text
    Background!#!Endovascular embolization is an effective treatment option for cerebral arteriovenous malformations (AVMs) and dural arteriovenous fistulas (DAVFs). A variety of liquid embolic agents have been and are currently used for embolization of AVMs and DAVFs. Knowledge of the special properties of the agent which is used is crucial for an effective and safe embolization procedure.!##!Material and methods!#!This article describes the properties and indications of the liquid embolic agents which are currently available: cyanoacrylates (also called glues), and the copolymers Onyx, Squid and PHIL, as well as their respective subtypes.!##!Results!#!Cyanoacrylates were the predominantly used agents in the 1980s and 1990s. They are currently still used in specific situations, for example for the occlusion of macro-shunts, for the pressure cooker technique or in cases in which microcatheters are used that are not compatible with dimethyl-sulfoxide. The first broadly used copolymer-based embolic agent Onyx benefits from a large amount of available experience and data, which demonstrated its safety and efficacy in the treatment of cerebral vascular malformations, while its drawbacks include temporary loss of visibility during longer injections and artifacts in cross-sectional imaging. The more recently introduced agents Squid and PHIL aim to overcome these shortcomings and to improve the success rate of endovascular embolization. Novelties of these newer agents with potential advantages include extra-low viscosity versions, more stable visibility, and a lower degree of imaging artifacts.!##!Conclusion!#!All the available liquid embolic agents feature specific potential advantages and disadvantages over each other. The choice of the most appropriate embolic agent must be made based on the specific material characteristics of the agent, related to the specific anatomical characteristics of the target pathology
    • …
    corecore