278 research outputs found

    Dynamics and combustion of single aluminium agglomerate in solid propellant environment

    Get PDF
    Aluminized composite propellant used in solid rocket motors contain a lot of aluminium particles because high combustion energy is generated and propulsion efficiency increases by burning aluminium particles. The combustion of aluminum occurs in a significant portion of the combustion chamber and produces aluminum oxide smokes and residues that are carried into the flowfield. Agglomerates have non-spherical shape, and consist of aluminium droplet and oxide particle (oxide cap) attached to the droplet. Unlike the liquid droplet ignition, the solid oxide film blocks the liquid aluminum from the penetration of the oxidizer hence prevents the particle from its ignition. Development of robust models of aluminum particle dynamics is essential in the design of advanced propulsion systems. The mathematical model of two-phase flow around a single aluminum droplet with oxide cap is developed. The model solves the continuity, momentum, energy and species continuity equations simultaneously to obtain the species and temperature profiles and the burning time of droplet. The results of numerical simulations are compared with predictions from semi-empirical correlations and computational data

    Flows of real gas in nozzles with unsteady local energy supply

    Get PDF
    When gas flows at a high speed in a channel with a variable cross sectional area and high-intensity energy supply, it experiences complicated physical and chemical processes producing high-temperature gas effects. High-temperature gas effects are a key issue related to design and optimization of nozzles of plasmatron of alternating current. The finite volume method is applied to solve unsteady compressible Euler equations with high-temperature gas effects. Solutions of some benchmark test cases are reported, and comparison between computational results of chemically equilibrium and perfect air flowfields is performed. The results of numerical simulation of one-dimensional and two-dimensional under- and over-expanded nozzle flows with a moving region of energy supply are presented. Output nozzle parameters are calculated as functions of a number and time of burning of plasmatron arcs. The results obtained show a qualitative pattern of gas dynamics and thermal processes in the nozzle with unsteady energy supply demonstrating the displacement of the nozzle shock wave towards the nozzle outlet in the over-expanded nozzle flow in comparison to perfect gas flow

    π+\pi^+ and π0\pi^0 Polarizabilities from {γγππ\gamma\gamma\rightarrow\pi\pi} Data on the Base of S-Matrix Approach

    Full text link
    We suggest the most model-independent and simple description of the γγππ\gamma\gamma\rightarrow\pi\pi process near threshold in framework of S-matrix approach. The amplitudes contain the pion polarizabilities and rather restricted information about ππ\pi \pi interaction. Application of these formulae for description of MARK-II \cite{M2} and Crystal Ball \cite{CB} data gives: (αβ)C=(6.0±1.2)1042cm3(\alpha-\beta)^{C}=(6.0\pm 1.2)\cdot 10^{-42} {\rm cm}^{3}, (αβ)N=(1.4±2.1)1042cm3(\alpha-\beta)^{N}=(-1.4\pm 2.1)\cdot 10^{-42} cm^3 (in units system e2=4παe^2 = 4 \pi \alpha) at the experimental values of ππ\pi \pi scattering lengths. Both values are compartible with current algebra predictions.Comment: LaTeX, 14 pages plus 6 figures (not included, available upon request) , ISU-IAP.Th93-03, Irkuts

    Squeezed condensate of gluons and ηη\eta-\eta' mass difference

    Full text link
    We consider a mechanism to create the ηη\eta - \eta' mass difference by the gluon anomaly in a squeezed vacuum. We find that the mass shift of the η0\eta_0 governing this mass difference is determined by the magnetic part of the gluon condensate. For the squeezed vacuum this magnetic part coincides with the total gluon condensate, so that we get a relation between the gluon condensate and the mass shift of the η0\eta_0 as a function of the strong coupling constant αs\alpha_s. The values of the gluon condensate obtained through this relation are compared with the value by Shifman, Vainshtein and Zakharov and the recent update values by Narison.Comment: 8 pages, 1 figure included; uses elsart style, psfig style, LaTe

    Search for the radiative decay ηπ0γγ\eta \to \pi^0 \gamma \gamma in the SND experiment at VEPP-2M

    Full text link
    The ηπ0γγ\eta \to \pi^0 \gamma \gamma decay was investigated by the SND detector at VEPP-2M e+ee^+e^- collider in the reaction e+eϕηγe^+e^-\to\phi\to \eta\gamma. Here we present the results and some details of this study. We report an upper limit (90% c.l.) Br(ηπ0γγ)<8.4×104Br(\eta \to \pi^0 \gamma \gamma)<8.4\times 10^{-4} as our final result. Our upper limit does not contradict the earlier measurement by GAMS spectrometer. To facilitate future studies a rather detailed review of the problem is also given.Comment: 24 pages, 6 figures, LaTex. To be published in Nucl. Phys.
    corecore