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Abstract

When gas flows at a high speed in a channel with a variable cross sectional area and high-
intensity energy supply, it experiences complicated physical and chemical processes produc-
ing high-temperature gas effects. High-temperature gas effects are a key issue related to
design and optimization of nozzles of plasmatron of alternating current. The finite volume
method is applied to solve unsteady compressible Euler equations with high-temperature
gas effects. Solutions of some benchmark test cases are reported, and comparison between
computational results of chemically equilibrium and perfect air flowfields is performed. The
results of numerical simulation of one-dimensional and two-dimensional under- and over-
expanded nozzle flows with a moving region of energy supply are presented. Output nozzle
parameters are calculated as functions of a number and time of burning of plasmatron arcs.
The results obtained show a qualitative pattern of gas dynamics and thermal processes in
the nozzle with unsteady energy supply demonstrating the displacement of the nozzle shock
wave towards the nozzle outlet in the over-expanded nozzle flow in comparison to perfect
gas flow.
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1 Introduction

Gas flows in channels with a variable cross-sectional area with unsteady local energy supply
arise in alternating current plasmatrons, high-voltage lightning protection switches and other
technical devices. In connection with requirements of practice aimed at reducing the number
of tests of designed products and the terms of development, there is an increased interest
in the mathematical modelling and simulation of flows in nozzles with intensive energy
supply [1].

The effect of spatial and temporal characteristics of a pulsating energy source on the
supersonic flow in an expanding channel is considered in [2]. The use of low-frequency energy

Corresponding author: k.volkov@kingston.ac.uk



2

sources to improve propulsion characteristics produces higher values of specific impulse than
a continuous supply of energy.

The transition from a supersonic flow regime in a channel to a subsonic one is accom-
panied by an increase in static pressure. The interest in the pseudo-combustion mode is
due to the fact that during its organization, intensification of the mixing of fuel with an
oxidizer occurs, and the rates of chemical reactions increase (due to an increase in pressure
and temperature). Controlling the position of the pseudo-shock wave presents a considerable
difficulty both in the isothermal flow and in the organization of combustion.

Conventional control methods based on stabilizers (ledges and pylons) lead to total
pressure losses, and the position of the pseudo-shock wave is attached to the elements of the
stabilizers. The possibilities and methods of controlling a pseudo-shock wave in a smooth
channel of constant cross section with a pulse and periodic energy supply are shown in [3].
Design of Laval nozzle for real gas flows is discussed in [4].

The results of calculations of unsteady quasi one-dimensional flow in a channel repre-
senting an element of a ramjet engine are reported in [5]. The influence of the parameters
of the energy supplied in the pulse and periodic mode (power, pulse frequency, distribution
of sources along the channel length) on the flow characteristics is determined.

The behaviour of the electric arc in a supersonic nozzle flow is studied in [6, 7]. The
energy supply leads to the displacement of the nozzle shock towards the inlet section of
the channel compared to the flow without an energy supply and to the formation of vortex
structures deforming the shape of the nozzle shock. The Prandtl turbulence model and
the k–ε turbulence model are used to close the Reynolds averaged Navier–Stokes (RANS)
equations.

A two-dimensional model of flow in a plane and axisymmetric nozzle with local gas heat-
ing in the supersonic part, based on the Navier–Stokes equations and equations describing
the heat balance in a gas heated by laser radiation, is developed in [8]. Parameters of the
gas flow and the volume energy input, at which the gas heating does not exceed 1000–2000
K, are studied. The localized energy input into the flow is accompanied by an increase in
pressure in front of the energy release region. When the energy input is sufficiently large, a
shock wave occurs, which is located upstream of the energy release region.

A method of numerical simulation of the internal flows of a viscous gas, taking into
account non-equilibrium chemical processes and the equilibrium excitation of the internal
degrees of freedom of molecules, is developed in [9]. A flow of chemically non-equilibrium gas
in a plane channel with a variable cross-sectional area is considered (a five-component model
of air is used). The Euler and Navier–Stokes equations for the simulation of the development
of zones of local energy supply in supersonic air flow in a channel are used in [10]. In the
model of a real gas, the changes in the shock wave structure and flow parameters in the
vicinity of the energy supply zone developing in a stationary medium and in the conditions
of its interaction with a normal shock at different energy supply intensities, are discussed.

In this study, a model for the numerical study of unsteady gas dynamic effects accom-
panying local heat release in the subsonic part of a nozzle for a given distribution of power of
energy release is developed. The constructed model is applied to flows with unsteady energy
supply in nozzles, which are of interest for alternating current plasmatrons. Moving arcs are
formed which are sources of intense energy supply. It is allowed to burn one or more arcs that
are at different points in space, have different intensities and move at a given speed relative
to the flow. A qualitative structure of shock wave and thermal processes in the nozzle during
unsteady energy supply is discussed. The dependence of the nozzle output characteristics,
as well as the displacement of the nozzle shock wave in over-expanded nozzle flow, on the
intensity and cyclical energy supply in the subsonic part of the nozzle is reported.
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2 Mathematical model

In simulation of flows with energy supply, the problem is divided into a gas dynamic problem
with given heat sources and a physical problem, in which the mechanism of heat release is
studied for known flow parameters. The gas dynamic problem is solved using the Euler
equations (the viscosity and thermal conductivity of the medium are ignored) or using the
Navier–Stokes equations (for a viscous heat conducting gas).

Inviscid flow analysis neglects the effect of viscosity on the flow and is appropriate for
high-Reynolds-number applications where inertial forces tend to dominate viscous forces.
In particular, inviscid flow calculations are appropriate in an aerodynamic analysis of some
high-speed projectile providing a good initial solution for problems involving complicated
flow physics and flow geometry [1]. The viscous forces are still important, but in the early
stages of calculations the viscous terms in the momentum equations are ignored. Once the
calculation has been started and the residuals are decreasing, the viscous terms may be
turned on (by enabling a laminar or turbulent flow) and the solution can be continued to
convergence.

The unsteady flow of an inviscid compressible gas is described by Euler equations with
a source term that takes into account energy supply. To describe flows with gas dynamic
discontinuities appearing in high-speed flows, the integral form of the Euler equations is used

∂

∂t

∫
V

UdV +

∮
S

F dS =

∫
V

HdV. (1)

The vector of conservative variables, the flux vector and the source term have the form

U =

 ρ
ρv
e

 , F =

 ρvn
ρvnv + pn
(e+ p)vn

 , H =

 0
0
q

 .

The specific total energy is found as

e =
p

γ − 1
+

1

2
ρv2.

Here, t is the time, ρ is the density, v is the velocity, p is the pressure, e is the total energy
per unit mass, n is the external unit normal to the boundary, vn is the normal velocity
(vn = v · n = unx + vny), u and v are the Cartesian velocities in x and y coordinate
directions, nx and ny are the projections of unit normal on x and y directions, γ is the
ratio of specific heat capacities, and q is the specific power of energy supply. The intensity
of energy supply is specified or found from additional relations taking into account physics
of the specific problem. The energy of chemical transformation is the internal energy of
the system and is taken into account as an integral part of the total energy. The rate of
a chemical reaction is written in the Arrhenius form, and the pre-exponential factor and
activation energy are specified for each specific chemical system.

For the model of a stationary one-dimensional flow with energy supply in a narrow zone
(reaction front), there is an exact solution linking the flow parameters in the zones before and
behind the energy supply. The relationship between the thermodynamic variables before and
behind the energy supply zone is described by the Rankin–Hugoniot equation. The pressure
and density behind the reaction front are related to the inlet Mach number by the Rayleigh–
Michelson equation. The state of the medium behind the energy supply zone is determined
from the intersection of the Michelson line with the Rankine–Hugoniot equation. At the same
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time, there is a maximum power supply that can be brought to the flow under steady-state
conditions.

The no-penetration boundary condition for normal velocity is applied to the channel
wall (the boundary condition for the tangential velocity on the wall is not set in the inviscid
gas model). In the inlet section of the channel, the total pressure and total temperature are
specified. In the case of a subsonic outflow from the nozzle, a static pressure equal to the
surrounding pressure is fixed in the outlet section. This system of conditions determines the
physical boundary conditions. Missing boundary conditions are determined from equations
written in the characteristic form.

To solve the problem in a stationary formulation, the pseudo-time method is used,
according to which the steady state (time independent) distributions of gas parameters are
found as a solution of the unsteady problem for t → ∞. In this case, the form of the initial
distribution of the flow quantities is insignificant. To speed up the calculation, physical
initial conditions are used, based on the relations of the one-dimensional theory of isentropic
gas flow in a nozzle. When solving the problem in an unsteady formulation, the steady state
solution of the problem is selected for the initial approximation in the absence of energy
supply. The solution of an unsteady problem when applying energy according to a periodic
law is carried out until a periodic solution is obtained. The moment of achievement of a
periodic solution is determined by comparing average values of the gas flow over a period of
time that is a multiple of the period of energy supply (usually after 10 periods).

Negligible viscosity can no longer be assumed near solid boundaries. Assuming inviscid
flow can be a useful tool in solving many fluid dynamics problems, however, this assumption
requires careful consideration of the fluid sub-layers when solid boundaries are involved [11].
The conventional method for the analysis of supersonic nozzle flowfields is to assume the
flow to be inviscid everywhere except near the wall where a thin viscous layer grows. The
inviscid core is described by Eulers equations and the wall layer is described by boundary
layer equations, or Navier–Stokes equations are applied to flow domain. This technique is
universally used to design contoured supersonic nozzles for specified exit flow conditions [12].

However, in supersonic flow, shock and boundary layer interaction is evident, and the
structure of this interaction is complex and difficult to predict. Recent investigations in the
inviscid and viscous interaction as well as more complex Navier–Stokes codes are encouraging,
but still the supersonic flowfields with strong imbedded shock waves and boundary layer
separations create tremendous difficulties. In the vicinity of the nozzle exit, the boundary
layer at the initial jet expansion is very thin, and inviscid theory has been shown to describe
the resulting jet flow reasonably well. Further from the nozzle exit, the thickening shear
layer and recirculation region have required the addition of boundary layer approximations
to inviscid theory to capture the jet structure fully. The effectiveness of all of these flow
solution approaches are highly dependent on specific models applied and how certain models
are coupled to the flow solver.

3 Numerical method

Two stages of solving the problem at one time step are distinguished: the energy stage
(solving the equation of energy change together with the equations describing the heat
generation in the flow due to external energy sources) and the gas dynamic stage (calculation
of the density, velocity and pressure fields).
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Using the finite volume method, the equation (1) is written in the form

Un+1
i = Un

i −
∆t

Vi

Ne∑
j=1

F i,jSi,j +∆tH i. (2)

Here, U i is the vector of conservative variables, F i,j is the flux vector to the cell i through
the edge j, Si,j is the edge length j of the cell i, Vi is the face area j of the cell i.

The Godunov method based on the solution of the Riemann problem is applied. When
applying the finite volume scheme (2), the fluxes are calculated in the direction of the normal
to the boundary. The flux on the edge of the control volume is determined as

F j+1/2 =
1

2

[
F (UL) + F (UR)

]
− 1

2
|A| (UR −UL), (3)

where |A| = R |Λ|L, and Λ = diag{vn − a, vn, vn + a} is the diagonal matrix of eigenvalues
of the matrix A. For the ideal gas, the Jacobian is represented as

A =


0 1 0

−(3− γ)
u2

2
(3− γ)u γ − 1

(γ/2− 1)u3 − ua2

γ − 1
(3/2− γ)u2 +

a2

γ − 1
γu

 .

Matrices of the right and left Jacobian eigenvectors have the form

R =

 1 1 1
u− a u u+ a
H − ua u2/2 H + ua

 , L =
1

2

 b1 + u/a −b2u− 1/a b2
2− 2b1 2b2u −2b2
b1 − u/a −b2u+ 1/a b2

 .

Here, a = (γp/ρ)1/2 is the speed of sound, and b1 = b2u
2/2, b2 = (γ − 1)/a2.

To increase the order of accuracy of the finite volume scheme (3) when interpolating
flow quantities on the edge of the control volume, the principle of minimal derivatives is
used. The components of the vector of conservative variables on the faces of the control
volume are determined by the Roe method. To avoid computational oscillations near the
sound point, entropy correction is used. Time discretization is performed using the three-step
Runge–Kutta method.

In the computations of inviscid flows some non-physical solutions such as expansion
shocks may occur. The non-physical expansion shocks only occur in those regions of the
computational domain where expansions are observed through sonic regions. Sonic expansion
corresponds to the regions where the wave speed vanishes. Once the region of sonic expansion
is detected, an expansion shock can be avoided by diffusing the expansion shock into the
domain of computation within the band epsilon. The diffusion process is accomplished
numerically by moving eigenvalues of the Jacobian away from its origin. Various formulations
could diffuse the expansion shock.

Most high-order techniques experience a loss of robustness when the solution contains
discontinuities or even under-resolved physical features. In order to avoid unrealistic solu-
tions like expansion shocks from appearing as a part of a solution, the entropy condition
for the Roe scheme must be satisfied. A variety of entropy fix formulae for the Roe scheme
have been addressed in the literature [13, 14]. The most popular is the correction proposed
in [15].

In cases where stationary energy supply is carried out in a supersonic flow (the energy
supply intensity does not exceed a critical value), it is possible to design time-marching
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calculation schemes [16] (in a supersonic flow, the equations are hyperbolic in the x direction).
To speed up the calculations, a vectorized approach to the fluxes calculation is used [17],
which allows avoiding the programming of cyclic constructions.

4 Real gas effects

At low temperatures and pressures, internal energy consists of the energy of the translational
and rotational motion of molecules. Therefore, air is considered as a perfect diatomic gas
with a constant molecular weight, constant specific heats and constant adiabatic index.
High-temperature flows are characterized by the excitation of vibrational degrees of freedom
of polyatomic molecules, the presence of dissociation and ionization processes [1]. In the air,
oxygen dissociation occurs at T =2000–4000 K, and nitrogen dissociation occurs at T =4000–
10000 K. At T =7000–10000 K, the ionization process begins with the formation of free
electrons. At T >10000–12000 K, significant fractions are single ions of these components.

To describe the equilibrium dissociation of some diatomic gases, the model of the ideal
dissociating gas (Lighthill model) is used. Its properties are described by three constants,
which allows for ja generalized analysis of the influence of dissociation. In the model devel-
oped in [18], air is considered as an ideal mixture of oxygen and nitrogen (it is assumed that
there are no nitrogen compounds with oxygen) with constant molar concentrations, taking
into account the excitation of vibrational and rotational degrees of freedom of molecules.
The average molar mass of the mixture remains constant, and the equation of state retains
the form corresponding to the equation of state of an ideal gas.

The advantage of the model proposed in [19] (the Kraiko model) is the inclusion of
dissociation and ionization of air at high temperatures. When taking into account the real
thermodynamic properties of air, explicit expressions are used for the density and specific
internal energy through pressure and temperature ρ = ρ(p, T ) and ε = ε(p, T ). In the
temperature range from 200 to 20000 K and pressures from 0.001 to 1000 atm, the model
error does not exceed 1.5% in density and 3% in enthalpy.

The equations describing the flow of a real gas have the same form as the equations for an
ideal gas (1). When using the approximate model (the Kraiko model or the Lighthill model),
difficulties arise in the transition from conservative to physical variables. In approximate
models, the gas state is determined in the function of the variables ρ = ρ(p, T ) and ε =
ε(p, T ), and the dependence p = p(ρ, ε) is used for calculations. For the transition between
physical and conservative variables with known density and internal energy, a system of
algebraic equations is solved

f1(p, T )− ρ = 0, f2(p, T )− ε = 0.

In addition to the conservative form of equations, a quasi-linear form of equations is
used in the calculations (for example, for specification of boundary conditions, determination
of characteristic relations, calculation of eigenvectors). Unlike the perfect gas model, in the
real gas model the Jacobian has the form

A =

 0 1 0

a2 − u2 − (H − u2) pε/ρ 2u− upε/ρ pε/ρ

u(a2 −H)− u(H − u2)pε/ρ H − u2pε/ρ u+ upε/ρ

 .

For a gas whose thermal equation of state is written in the form p = p(ρ, ε), the matrices
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composed of the right and left Jacobian eigenvectors have the form [20,21]

R =

 1 1 1

u− a u u+ a

H − ua H − ρa2/pε H + ua

 ,

L =
pε

2ρa2

 u2 −H + ρc(u+ a)/pε −u− ρa/pε 1

2(H − u2) 2u −2

u2 −H − ρc(u− a)/pε −u+ ρa/pε 1

 .

The total energy and local speed of sound are found as

H = ε+
p

ρ
+

1

2
u2, a2 = pρ + pε

p

ρ2
,

where pρ = ∂p/∂ρ, pε = ∂p/∂ε. The Jacobian eigenvalues and characteristic ratios for
real gas are preserved in the same form as in the case of an ideal gas flow. The vectors of
conservative variables on the faces of the control volume are determined by the Roe method
in the same relationships as for an ideal gas.

Methods for approximating thermodynamic functions are based on the use of an effective
adiabatic index. The adiabatic exponent is replaced by a certain constant value, which is
formally considered as an adiabatic exponent and corresponds to it with unexcited degrees
of freedom of gas molecules. There are various approaches to determining the effective
adiabatic exponent. In modelling shock wave processes, the definition of γs = h/ε is used.
Using pressure and density as thermodynamic parameters, the internal energy is represented
in the form ε = p/[(γs−1)ρ]. The isentropic index (effective specific heat ratio) is determined
by the formula

γe =
cp
cv

[
1 +

p

µ

(
∂µ

∂p

)
T

]−1

,

where µ is the molar mass of gas, cp and cv are specific heat capacities at constant pressure
and constant volume. At a pressure-dependent molecular weight, the adiabatic exponent γe
does not equal (like γs) the ratio of specific heat capacities in the corresponding process.
The values γc = cp/cv, γs and γe depend on the pressure and temperature as shown in the
Figure 1a–c. The distribution of effective heat ratio as a function of temperature at a fixed
pressure equal to p = 1 atm shows the Figure 1d.

A solution of the Riemann problem for real gas is provided in [22]. The splitting of the
flow vector and the increment of the flow vector for the case of a real gas are considered
in [23, 24], and features of the Roe method are discussed in [20]. The case of a multi-
dimensional flow is considered in [24], while various methods of splitting the flow vector
are discussed in [25]. When using the Godunov method, it is assumed that the solution to
the Riemann problem corresponds to the case of a frozen flow (for neighbouring cells, their
effective values of the adiabatic exponents are used). The resulting frozen flows are used to
calculate conservative variables, after which equilibrium parameters are determined for each
cell.

Entropy and enthalpy are calculated with the equilibrium adiabatic index γe. Moreover,
the equilibrium speed of sound is found from the relation ae = (γep/ρ)

1/2. The characteristic
conditions are set similarly to the case of an ideal gas, taking a2 = pρ + ppε/ρ

2.
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Figure 1. Dependencies of the effective ratio of specific heat capacities on temperature
and pressure

5 Model of energy supply

In calculations of the flows of an ideal gas, simplified energy supply models are used which do
not take into account processes of ionization and dissociation, as well as chemical reactions
that occur in a real gas at high temperatures [10].

5.1 Temperature distribution

The T -model assumes an instantaneous energy supply and zero value of the source term
in the energy conservation equation (q = 0) [26]. The energy supply is specified by the
temperature distribution at the initial time moment t = 0. The source term describes an
ellipse centered at (x0, y0), and the dimensions of the half-axes Rx and Ry are determined as

T (x, y) = T∞ +∆T (x, y),

where

∆T (x, y) = ∆T0 exp

[
−
(
x− x0

kRx

)2

−
(
y − y0
kRy

)2
]
.

Here, T∞ is the temperature of surrounding gas, and ∆T0 = T0 − T∞ is the temperature
increment at the center of energy supply region. The smaller the parameter 0.5 6 k 6 1, the
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smaller the gap in gas parameters at the boundary of the energy supply zone is observed.
The value of the determining parameter of the model ∆T0 is calculated by the formula

∆T0 =
Q

ρ∞cvI
,

where Q is the energy absorbed by the medium, ρ∞ is the density of surrounding gas, and
cv is the specific heat capacity at constant volume. The integral of the function describing
the spatial distribution of intensity in the volume V0 has the form

I =

∫
V0

exp

[
−
(
x− x0

kRx

)2

−
(
y − y0
kRy

)2
]
dV.

This model simulates only a single pulse of energy supply, not taking into account its dura-
tion.

5.2 Intensity distribution

In q-model, it is possible to take into account the influence of stationary, single, pulse or
periodic supply of energy of various durations and frequencies. In this case, the source term
in the energy conservation equation is non-zero (q ̸= 0) [26].

The specific power supplied to the region in the form of an ellipse centered at the point
(x0, y0), and the dimensions of the semi-axes Rx and Ry are determined as

q(t, x, y) = q0f(t) exp

[
−
(
x− x0

kRx

)2

−
(
y − y0
kRy

)2
]
,

where q0 is the specific power of the energy supply at the center, f(t) is the function describing
the intensity change in time, Rx and Ry are the characteristic lengths of the energy release
region. The parameter 0.5 6 k 6 1 determines the intensity values at the boundary of the
energy supply region. For a single pulse of energy of duration τ function f(t) has the form

f(t) =

{
1 if 0 6 t < τ,

0 if τ 6 t.

The determining parameter of the model is calculated by the formula

q0 =
Q

ρ∞τI
.

When the energy supply simulates the operation of a three-phase current plasma torch,
in which the areas of energy release (electric arcs) periodically appear and move along the
channel centreline, the coordinates x0 = x0(t) and y0 = y0(t) are determined by the path
travelled by the arc and the speed.

In case of setting the mass energy supply, the effective energy supply is several times
smaller due to a decrease in the gas density during heating [27]. Available results indicate the
promise of using simplified models of energy supply for an ideal perfect gas during parametric
calculations [10].
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Creation of solid model Mesh generation
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Properties of working gas

Control of calculations

Export of geometry and mesh
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Import of results

Visualization of results

Computational parameters
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Figure 2. Functional sub-systems of the code

6 Code structure

The code consists of three main sub-systems, a data preparation sub-system (pre-processor),
a counting process control sub-system (CFD solver), and a visualization sub-system (post-
processor). Interaction of sub-systems and data streams are shown in the Figure 2).

Functioning of various sub-systems is as follows.
1. Sub-system of data preparation and creation of a solid state model. Import solid

models and meshes from commercial packages.
1.1. Setting the geometry of the computational domain. Geometry information is stored

separately from the flowfield.
1.2. Meshing.
1.3. Specification of boundary conditions. Permissible types of boundary conditions

and the necessary data for specifying each of these types. Boundary conditions are linked to
individual mesh lines. The process is based on commercial mesh generators.

1.4. Specification of initial conditions. Initial conditions are set either analytically or
using table interpolation data, or by reading from a file.

1.5. Setting parameters related to the physical formulation of the problem and the
implementation of the computational algorithm.

2. Sub-system of control the process of counting. Several control options are used:
— management during the calculation is not allowed (management is done through the

data preparation system, setting the number of time steps, the results are written in files);
— partial control (the possibility of observation is provided to change some parameters);
— full control (suspension of the account and change of control parameters, preserva-

tion of the current state with subsequent restart, obtaining intermediate results, outputting
results at reaching a given value of a parameter).

3. Sub-system of visualization of results (graphical representation of the results in the
form of contours, vector fields, graphs) and export results in a number of formats supported
by common commercial packages.

From a mathematical point of view, calculating the flow quantities is a solution of the
initial/boundary value problem using the finite volume method (Figure 3).

In a conventional programming language, the scheme for solving the problem is as
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Figure 3. Structural scheme of the problem solution

follows.

Preparation of data and initialization Communications between processors

do {

Time advancement

Calculations in internal nodes

Calculations in boundary nodes

Communications between processors

Output/Results storing

} while (calculations termination)

Results post-processing

Creating a solid state model and meshing, specification of boundary conditions and pro-
cessing of the results are performed on the local computer using commercial data processing
systems. The mesh is uploaded in a text or binary format. The pre-processor reads the
mesh file and generates a file containing necessary information about the number and size of
the vectors that are allocated in memory at the calculation stage. The solver reads this file,
file containing the boundary and initial conditions and file containing physical parameters
of the environment. The calculation is performed, and the calculated data is uploaded to a
file for subsequent processing in the visualization system. The memory is allocated at the
data loading stage, and iterative calculation is performed without memory reallocation.
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Powerful and flexible technology for software development is provided by object-oriented
programming (OOP) tools [28–30]. Its distinguishing features are transparency and the
ability to access details of the implementation of a particular method and algorithm, the
mathematical clarity of the description of the new method for the developer and user, the
openness and the ability to supplement the library with new procedures, and the ease of use
of the developed methods.

A mathematical class is associated with each of the distinguished concepts, and a prob-
lem class is associated with a generalized statement (Figure 4).

Object structure of software

Mathematical object Computational algorithm Numerical problem

Mathematical classes Algorithmic classes Problem classes

Figure 4. Object structure of package and class hierarchy

A mathematical object is an entity expressing a certain mathematical category and
making up an object of computation. In the class core of the library are included vectors,
matrices, and, in the more general case, the geometric primitives from which the solid model
is built. Each mathematical object has a set of mathematical features that are the basis for
classification constructions. However, mathematical objects do not constitute a computa-
tional problem and are only a tool for its formulation and solution. Mathematical classes
express general problem-invariant concepts, and a mathematical object-oriented library is a
basic tool environment for developing computing applications.

The computational algorithm refers to the methods of computational mathematics and
supporting information that determines the conditions for their algorithmic use. Each al-
gorithm is designed to solve one problem, although it can be indirectly used to solve other
problems (different approaches can be used to solve numerical problems of one class). In
addition to the parameters of the numerical method, the algorithmic objects contain infor-
mation about the accuracy of the solution and the computational resources available (they
are expressed, for example, in the form of a limit on the number of iterations and counting
time).

The problem of computational mathematics, presented in a unified form (for example,
the problem of solving a system of differential equations), is considered a numerical problem.
The organization of problem classes provides the desired commonality of software implemen-
tation of close problem statements that differ in the types of mathematical objects. Along
with solving the problem, it is important to have information about the correctness and effi-
ciency of using the algorithm in a specific situation. Such information is associated with the
problem being solved, and not with the used computing objects. Since objects of numerical
problems have a longer lifetime than basic objects, computing resources are managed at this
level.

Files and data required for the numerical solution of the problem in one way or another
are shown in the Figure5 (it is believed that the program works in batch mode, the graphical
interface is not used).

The script file (source data file) contains the information necessary to solve the problem,
in particular, the names of the files with the geometry of the region, the type of boundary
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Files and data

File of problem Mesh file Flowfield file

Initial Final. . .Level 1 Level 2

File of boundary

. . .Boundary 1 Boundary 2

conditions

Files of local
characteristics

File of integral
characteristics

Forces

Moments

Losses

. . .

Pressure

Temperature

Heat flux

. . .
File of convergence

history
File of integral

parameters

Figure 5. Files and data

conditions, the parameters of the difference scheme, the thermophysical characteristics of
the liquid and other parameters. For parameters whose values are not defined in the script
file, default values are used.

Binary mesh files and flow fields contain the coordinates of the mesh nodes, the initial
distributions of the desired functions, as well as the shape of mesh cells, the type of boundary
conditions to be set, and a number of other parameters. The mesh is stored separately from
the flowfield. At the same time, a separate file is used to store each level of the unstructured
mesh (level 1 corresponds to the mesh with the best resolution). The initial and final
flowfields are stored either in separate files (the file of the initial flowfield is kept unchanged)
or in the same file (the file of the initial flowfield is replaced by a new one).

Boundary condition files store function profiles defined at the boundaries. To check the
convergence of the iterative process, a file containing the values of the residuals is required.
To process the calculation results, the values of the local and integral parameters of the
stream are stored in files whose names are indicated in the script file.

7 Results and discussion

Results of numerical simulation of one-dimensional and two-dimensional under- and over-
expanded nozzle flows with a moving region of energy supply are presented.

7.1 Nozzle geometry and energy supply

The channel cross-sectional area varies according to the dependence S = 1 + 2x2, where
−0.3 6 x 6 1. The coordinate x = 0 corresponds to the critical section of the nozzle.
For one-dimensional calculations, a mesh containing 800 nodes is used. In two-dimensional
calculations, a uniform mesh is used along the coordinates x and y containing 800 × 400
nodes. The number of mesh nodes is selected based on checking the convergence of numerical
solutions on different meshes with a gradual increase in relevant dimension. Calculations are
terminated upon reaching a final given point in time.

The energy supply model with a moving energy release region allows one to take into
account the effect of the displacement of the intense energy supply zone in case of one or
more plasma torch arcs. The diagram of a single energy supply region that periodically
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appears and moves in the channel is shown in the Figure 6a. The family of lines correspond
to different points in time (with a constant step), and the shape of each curve displays the
spatial distribution of the energy supply intensity. The energy supply diagram for three
periodic moving arcs with a time-varying intensity is shown in the Figure 6b. In both cases,
three full periods of energy supply are shown, where τ is the period of energy supply, and
Q0 is the maximum value of energy supply. The arc speed is 10 m/s, and the path travelled
by the arc is 0.2 m. The arc burning time is 0.025 s.
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Figure 6. Distribution of the energy supply intensity over time for one arc (a) and three
arcs (b)

The form of the function that describes the change in intensity over time is shown in the
Figure 7 for a single arc and three arcs of a plasma torch. With a sufficiently large number
of pulses, the distribution of the energy release intensity over the spatial coordinate becomes
almost uniform.
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Figure 7. A single discharge pulse (a) and multiple discharge pulses (b)

The use of pulse or periodic energy sources makes it possible to realize sufficiently high
peak power supply. The structure of the shock wave and the thermal wake behind the energy
supply region substantially depend on the pulse repetition rate. With a certain frequency of
such sources and by ensuring energy equivalence, it is possible to realize flows with properties
close to those that are formed under conditions of stationary energy supply, when the thermal
trace becomes continuous. The condition of energy equivalence is determined by the equality
of the energy supply parameter in stationary and non-stationary cases.
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7.2 Test cases

The unsteady flows in a channel with a variable cross-sectional area in one-dimensional
and two-dimensional formulations without an energy supply are considered, as well as a
stationary one-dimensional flow with energy supply in a narrow zone (reaction front), which
has an exact solution describing the flow quantities in zones before and behind power supply.

The pressure field in a two-dimensional flow in a nozzle without energy supply, obtained
by the pseudo time-marching method, is shown in the Figure 8. Such flow regimes in the
nozzle are considered when a nozzle shock wave is formed inside. The nozzle shock is visiblein
the region of concentration of the pressure level lines.

0

0.6

-0.3 0 10.2 0.4 0.6 0.8

y

0.3

x

Figure 8. Contours of pressure in the nozzle flow
without energy release

A comparison of the exact solution of the stationary quasi one-dimensional problem
(solid line) and the limiting numerical solution of the unsteady two-dimensional problem (the
symbols ◦ and ∗) is shown in the Figure 9. Satisfactory agreement of solutions is ensured
on a relatively coarse mesh, and the intensity and position of the shock wave corresponds
to the exact solution. The difference scheme spreads the nozzle shock wave over 1–2 mesh
cells. The solution is monotonous (there are no non-physical oscillations).

Another test case corresponds to the flow in the channel, in the output section of
which the boundary conditions are set corresponding to the supersonic flow (characteristic
boundary conditions). The energy supply zone is reproduced in one cell. The pressure and
temperature distributions behind the front of the power supply are shown in the Figure 10
depending on the Mach number in front of the power supply zone. For each Mach number,
there are two solutions, and there is a threshold of energy supply intensity (critical energy
supply). When the energy supply intensity exceeds a critical value, there is no stationary
solution of the problem. For example, for the Mach number M1 = 3, the critical energy
supply is q = Q/(cpT1) = 1.4815. Subscripts 1 and 2 refer to flow quantities before and
behind the energy supply zone.

The distributions of the flow quantities during supercritical energy supply are shown in
the Figure 11 at a fixed time, with M1 = 3. The dimensionless energy supply parameter is
assigned the value q = 2.

7.3 One-dimensional flows

The nozzle operating conditions are considered when the pressure of the over-expanded flow
is restored through the nozzle shock wave. Unsteady energy supply, carried out in the section
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Figure 9. Comparison of exact solution (solid line)
with results of numerical calculations (symbols ◦
and ∗). Symbols ◦ correspond to the flow quan-
tities along the centreline, and symbols ∗ corre-
spond to the flow quantities near the nozzle wall
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Figure 10. Pressure distributions (a) and temperature distributions (b) before and behind
the energy supply region for q = 0 (1), 0.5 (2); 1 (3); 2 (4)

of the subsonic path of the nozzle, causes the development of shock waves accompanied not
only by a change in the flow quantities, but also by the movement of shock wave structures
and pressure fluctuations. Unsteady energy supply leads to a significant restructuring of
the nozzle flow, an increase in temperature, and a change in gas pressure near the energy
supply region. After the end of the pulse, the high-temperature zone is transferred along the
centreline.

The pressure and temperature distributions at different points in time are shown in the
Figure 12 and Figure 13. The total pressure and the total temperature in the inlet section are
fixed at 8.5 ·105 Pa and 300 K, and the static pressure in the outlet section of the nozzle is set
to 6 · 105 Pa. The solid lines show the pressure and temperature distributions corresponding
to the stationary solution to the problem without energy supply, and the points show the
pressure and temperature distributions in the unsteady case. The distributions of flow
quantities given in the Figure 12a and Figure 13a correspond to the beginning of the arc
ignition process. For simplicity, the position of the arc, the intensity of which has a Gaussian
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Figure 11. Pressure distributions (symbols ∗) and
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t = 1.546

distribution in space with a sufficiently high localization, is shown by a vertical line for the
initial period of the energy supply cycle. The energy supply causes the appearance of high
gradients of flow quantities, localized in a narrow region. The process development is shown
in the Figure 12bd and Figure 13b–d. With a change in the intensity of energy supply, which
corresponds to the ignition and extinction of an arc, the intensity of discontinuities changes,
and regions with sharp gradients of the flow quantities move along the nozzle.

The effect of unsteady energy supply is shown in the Figure 14, where q = Q0/(G0H0)
is the dimensionless parameter that determines the energy supply intensity, and G0 and
H0 are the mass flow rate and total enthalpy without energy supply. If there is a periodic
energy supply in the subsonic part of the nozzle, the gas flow through the critical section
also becomes a periodic function. The integral value of the flow rate decreases compared to
its value in a flow without energy supply, and this difference increases with an increase in
the energy supply intensity.

For alternating current plasmatrons, the energy supply option with several simultane-
ously moving arcs is of interest. Figure 15 and Figure 16 show the effect of heat release on
the pressure and temperature distributions for three arcs (these results correspond to one
energy supply cycle). The arcs move one after the other along the nozzle centreline. The
vertical lines correspond to the positions of the arc at the corresponding time moments. For
simplicity, the spatial distribution of the energy supply intensity is not shown in the figures.

Due to the fact that the arcs move periodically, the distributions of flow quantities in
any sections are also periodic functions (Figure 17). An increase in the number of arcs leads
to a more uniform temperature distribution along the nozzle centreline.

7.4 Two-dimensional flows

In the two-dimensional case, energy is supplied in the subsonic part of the nozzle. The energy
supply region moves along the nozzle centreline, and the energy supply intensity cyclically
changes in time. The case of one burning arc is considered.

The pressure and temperature distributions at different times of the energy supply cycle
are shown in the Figure 18 and Figure 19. At moderate intensities of energy supply, its effect
on the pressure field is manifested to a lesser extent than on other flow quantities. The origin



18

0

0.2

0.4

0.6

0.8

1

1.2

x
-0.3 0 1

p/p
0

a)

0.2 0.4 0.6 0.8

 

0

0.2

0.4

0.6

0.8

1

1.2

x
-0.3 0 1

p/p
0

b)

0.2 0.4 0.6 0.8

 

0

0.2

0.4

0.6

0.8

1

1.2

x
-0.3 0 1

p/p
0

d)

0.2 0.4 0.6 0.8

 

0

0.2

0.4

0.6

0.8

1

1.2

x
-0.3 0 1

p/p
0

c)

0.2 0.4 0.6 0.8

-     Steady-state solution

.     Unsteady solution

-     Steady-state solution

.     Unsteady solution

-     Steady-state solution

.     Unsteady solution

-     Steady-state solution

.     Unsteady solution

Figure 12. Pressure distributions at time t/τ = 1.156 (a), 1.396 (b), 1.516 (c), 1.724 (d)
for one arc

of the high-temperature region shows the Figure 18a and Figure 19a, which correspond to
the moment the arc begins to burn. The high-temperature region is transferred by the
flow. The length of this region increases in time, and temperature gradients increase as well
(Figure 18b and Figure 19b). Behind the shock wave, a trace of the previous heat spot is
visible. Further development of the high-temperature region is observed in Figure 18c and
Figure 19c. After the arc attenuation, a convective drift of the heat spot occurs, and the
temperature field becomes the same as during a flow without energy supply (Figure 18d and
Figure 19d). The configuration of the perturbed region and the amplitude values of the flow
quantities (temperature, pressure, Mach number) depend on the size of the energy release
region and the maximum value of the energy input.

The effect of the energy supply on the distribution of flow quantities is shown in Figure 20
and Figure 21 for a fixed nozzle section. The solid lines correspond to the critical section
of the nozzle, and the dash-dotted lines correspond to the outlet section of the nozzle. The
influence of the energy supply on the temperature field is much more significant than that
on the pressure field. The pressure distributions inside and outside the energy supply region
are similar. The results obtained allow concluding that there is a significant non-uniform
flow in the outlet section of the nozzle. Both the temperature field and the pressure field
have two areas of sharp changes in parameters. In addition to the nozzle shock wave, sharp
gradients of flow quantities are observed in a narrow region of intense energy release.
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Figure 13. Temperature distributions at time t/τ = 1.156 (a), 1.396 (b), 1.516 (c), 1.724
(d) for three arcs

2 3 4 5
0.2

0.4

0.6

0.8

1
a)

t/τ

G/G0

2 3 4 5
0.5

1.5

2.5

3.5 b)

t/τ

T/T0

Figure 14. Mass flow rate through critical section of the nozzle (a) and temperature
distribution in the critical section (b) for one arc

7.5 Flows of real gas

The nozzle cross sectional area changes as S(x) = 1 + 2x2, where −1 6 x 6 2. The total
temperature at the inlet section of the nozzle is fixed at 5000 K. At the nozzle exit, a pressure
is set corresponding to the case of subsonic outflow. The calculations are carried out using
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Figure 15. Pressure distributions at time t/τ = 1.224 (a), 1.544 (b), 1.668 (c), 1.768 (d)
for three arcs

various methods for calculating the effective adiabatic exponent (γc, γe, γ∗). The results are
compared with those based on ideal gas model for two values of the adiabatic index (γ1 = 1.4
and γ2 = 1.2). The influence of various methods for determining the effective adiabatic index
on the distribution of flow quantities is investigated.

Comparative distributions of pressure, temperature and Mach number for various meth-
ods for determining the effective adiabatic exponent are shown in the Figure 22 for a flow
without an internal shock wave. The solid and dash-dotted lines correspond to the adiabatic
exponents γ1 = 1.4 and γ2 = 1.2, and the symbols ◦, ∗ and + correspond to the adiabatic
exponents γc, γe and γs. In the calculations corresponding to ideal and real gas flows, equal
values of temperature and pressure are set at the nozzle inlet. Moreover, the total enthalpy
of real gas is much higher than for an ideal gas.

Comparative distributions of pressure, temperature, and Mach number are shown in the
Figure 23 during the flow through the nozzle with the formation of an internal shock wave
(the notation is the same as in the Figure 22). The change in various effective adiabatic
exponents along the nozzle centreline is shown in the Figure 24 (the solid line corresponds to
γc, the dashed line corresponds to γs, the dash-dotted line corresponds to γe). The pressure
distribution in the nozzle flow with a subsonic output depends both on the magnitude of
the adiabatic index and method for determining its effective value. The distribution of the
Mach number is more sensitive to the method of determining the adiabatic exponent. Using
a real gas model leads to significant deviations in the temperature distribution. Due to
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Figure 16. Temperature distributions at time t/τ = 1.224 (a), 1.544 (b), 1.668 (c), 1.768
(d) for three arcs
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Figure 17. Mass flow rate through the critical section of nozzle (a) and temperature
distribution in the critical section of nozzle (b) for three arcs

the significantly different dissociation energies for oxygen and nitrogen, oxygen begins to
dissociate earlier than nitrogen. Behind the shock wave, in accordance with an increase in
temperature, the degree of dissociation also rises sharply.

Another option for comparing ideal and real gas flows, corresponding to the case of an
under-expanded flow in the nozzle, is shown in the Figure 25a. The same total pressure and



22

0

0.6

-0.3 0 10.2 0.4 0.6 0.8

y

0.3

a)

0

0.6

x
-0.3 0 10.2 0.4 0.6 0.8

0.3

b)

0

0.6

x
-0.3 0 10.2 0.4 0.6 0.8

y

c)

0.3

x

0

0.6

x
-0.3 0 10.2 0.4 0.6 0.8

y

d)

0.3

y

Figure 18. Contours of pressure at time t/τ = 2.154 (a), 2.410 (b), 2.531 (c), 2.977 (d)
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(d)



23

2 2.4 2.8 3.2 3.6 4
0.5

1.2

1.9

2.6

3.3

4

t/τ

p/p0

2 2.4 2.8 3.2 3.6 4
0.46

0.5

0.54

0.58

0.62

0.64

t/τ

T/T0

b)a)-       Critical section

---     Outlet section

-       Critical section

---     Outlet section

Figure 20. Pressure (a) and temperature (b) distributions along nozzle centreline (x = 0)
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Figure 21. Pressure (a) and temperature (b) distributions near nozzle wall (x = 0.98)

total enthalpies are taken as conditions at the nozzle inlet. The temperature distribution in
real gas is much lower than in ideal gas. This is because real gas absorbs significant energy
for the dissociation of molecules. For another calculation option, corresponding to the case of
an over-expanded flow in the nozzle, the temperature is assumed to be 10000 K (Figure 25b).
For such conditions, ionization processes in the input section become noticeable.

A real gas model allows taking into account dissociation processes. The proportion of
dissociated oxygen and nitrogen molecules depends on the current temperature and pressure.
It should be noted that, due to the significantly different dissociation energies for oxygen
(5.1 eV) and nitrogen (9.8 eV), oxygen begins to dissociate earlier than nitrogen. By the
time nitrogen dissociation begins, oxygen dissociation is almost complete (Figure 26a). The
ionization process is just starting, and the dissociation of oxygen completely finishes to the
start of ionization. The change in the degree of dissociation of oxygen and nitrogen molecules
in the case of over-expanded outflow from the nozzle is shown in the Figure 26b. Behind the
shock wave, in accordance with an increase in temperature, the degree of dissociation also
rises sharply.
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Figure 22. Temperature (a), pressure (b) and Mach number (c) distributions for various
effective specific heat ratios for under-expanded nozzle flow

8 Conclusion

Numerical studies of gas flows in technical devices in which processes associated with un-
steady supply of energy are carried out. To calculate one-dimensional and two-dimensional
nozzle flows with unsteady energy supply in the subsonic part of the nozzle, the finite volume
method was applied in the framework of ideal and real gas models.

The operating conditions of the nozzle with significant over-expansion are considered,
when the pressure of the over-expanded flow is restored through the nozzle shock wave. The
dependencies of the flow quantities on the intensity of energy supply and its effect on the
position and intensity of the nozzle shock wave are reported. The supply of thermal energy to
the flow leads to a significant increase in temperature and a change in gas pressure near the
energy supply region. After the end of the pulse, the zone of high temperature is transferred
along the nozzle centreline.

Unsteady energy supply, carried out in the subsonic part of the nozzle, causes the
development of intense shock wave processes, accompanied not only by a change in the flow
quantities in the nozzle, but also by the movement of shock waves and pressure oscillations.
The result of energy release in the flow is an increase in temperature and pressure, but a
significant decrease in the Mach number downstream. In the presence of a periodic energy
supply, the mass flow rate through the critical section becomes a periodic function. The
integral value of the flow rate decreases compared to its value in a flow without an energy
supply, and with an increase in the energy supply intensity, this difference increases. At
moderate intensities of energy supply, its effect on the pressure field is manifested to a lesser
extent than on other flow quantities. The configuration of the perturbed region and the
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Figure 24. Distributions of effective specific heat
ratios along the nozzle centreline

amplitudes of the flow quantities (pressure, temperature, Mach number) depend on the size
of the energy release region and the maximum energy input.
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Figure 25. Temperature distributions of ideal gas and real gas for under-expanded (a)
and over-expanded (b) nozzle flows
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Figure 26. Distributions of molar concentrations of dissociated oxygen molecules (line 1)
and nitrogen (line 2) for under-expanded (a) and over-expanded (b) flows
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