169 research outputs found

    Product Tests in Virtual Reality: Lessons Learned during Collision Avoidance Development for Drones

    Get PDF
    Virtual reality (VR) and real-world simulations have become an important tool for product development, product design, and product tests. Product tests in VR have many advantages, such as reproducibility and shortened development time. In this paper, we investigate the virtual testing of a collision avoidance system for drones in terms of economic benefits. Our results show that virtual tests had both positive and negative effects on the development, with the positive aspects clearly predominating. In summary, the tests in VR shorten the development time and reduce risks and therefore costs. Furthermore, they offer possibilities not available in real-world tests. Nevertheless, real-world tests are still important

    Π€Ρ–Π·ΠΈΡ‡Π½Ρ– властивості ΠΌΠ°Π³Π½Ρ–Ρ‚Π½ΠΈΡ… наночастинок ΡƒΠΏΡ€ΠΎΠ²Ρ–Π΄Π½Ρ–ΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ–

    Get PDF
    Π”ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†Ρ–ΡŽ присвячСно комплСксному Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½Π½ΡŽ магніторСзистивних Ρ– ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… властивостСй Ρ‚Π° Π³Π°Π·ΠΎΠ²ΠΎΡ— чутливості ΠΏΡ€ΠΈΠ»Π°Π΄ΠΎΠ²ΠΈΡ… систСм Π½Π° основі масивів ΠΌΠ°Π³Π½Ρ–Ρ‚Π½ΠΈΡ… наночастинок (НЧ) NiFe2O4, Π‘ΠΎFe2O4, Fe3O4 Ρƒ ΠΏΡ€ΠΎΠ²Ρ–Π΄Π½Ρ–ΠΉ Π½Π΅ΠΌΠ°Π³Π½Ρ–Ρ‚Π½Ρ–ΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ– Ag Π°Π±ΠΎ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΡˆΠ°Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π³Ρ€Π°Ρ„Π΅Π½Ρƒ. Π£ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– ΠΏΡ€ΠΎΠ°Π½Π°Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΎ Π·Π²'язок ΠΌΡ–ΠΆ структурним станом НЧ Ρ– магніторСзистивними, ΠΌΠ°Π³Π½Ρ–Ρ‚ΠΎΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΠΌΠΈ Ρ‚Π° ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΠΌΠΈ властивостями Π½Π°Π½ΠΎΠΏΡ€ΠΈΠ»Π°Π΄ΠΎΠ²ΠΈΡ… систСм. ВстановлСно ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΠΈ формування масивів спін-Π²Π΅Π½Ρ‚ΠΈΠ»ΡŒΠ½ΠΈΡ… ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Ρ–Π² ΠΏΡ€ΠΈ Π·Π±Ρ–Π»ΡŒΡˆΠ΅Π½Π½Ρ– Ρ‚ΠΎΠ²Ρ‰ΠΈΠ½ΠΈ ΠΏΡ€ΠΎΠ²Ρ–Π΄Π½ΠΎΡ— ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ– Ag Π²Ρ–Π΄ 5 Π΄ΠΎ 20 Π½ΠΌ Ρ– ΡƒΠΌΠΎΠ² Ρ—Ρ— Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΡ— ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΈ (Π’Π² = 600 К) Ρ‚Π° Ρ—Ρ… внСсок Ρƒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ ΠΌΠ°Π³Π½Ρ–Ρ‚ΠΎΠΎΠΏΠΎΡ€Ρƒ. Π•ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ Π²ΠΈΠ²Ρ‡Π΅Π½ΠΎ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ Π·ΠΌΡ–Π½ΠΈ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΎΠΏΠΎΡ€Ρƒ наноструктурованих ΡˆΠ°Ρ€Ρ–Π² Π²Ρ–Π΄ ΡƒΠΌΠΎΠ² Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΡ— ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΈ (Π’Π² = 1100 К) Ρ‚Π° дослідТСно Π²ΠΏΠ»ΠΈΠ² дСкорування ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– ΠΌΡƒΠ»ΡŒΡ‚ΠΈΡˆΠ°Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π³Ρ€Π°Ρ„Π΅Π½Ρƒ масивами НЧ NiFe2O4 для покращСння чутливості Π΄ΠΎ ΡˆΠΊΡ–Π΄Π»ΠΈΠ²ΠΎΠ³ΠΎ Π³Π°Π·Ρƒ NO2 Π½Π° 40 %. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ використані як ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½Ρ– Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†Ρ–Ρ— ΠΏΡ€ΠΈ ΠΏΠΎΠ±ΡƒΠ΄ΠΎΠ²Ρ– наноструктурованих Ρ‡ΡƒΡ‚Π»ΠΈΠ²ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² Π΄Π°Ρ‚Ρ‡ΠΈΠΊΡ–Π² Ρ€Ρ–Π·Π½ΠΎΠ³ΠΎ Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ призначСння.ДиссСртация посвящСна комплСксному исслСдованию магниторСзистивных ΠΈ оптичСских свойств, Π³Π°Π·ΠΎΠ²ΠΎΠΉ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΏΡ€ΠΈΠ±ΠΎΡ€Π½Ρ‹Ρ… систСм Π½Π° основС массивов ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… наночастиц (НЧ) NiFe2O4, Π‘ΠΎFe2O4, Fe3O4 Π² проводящСй Π½Π΅ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ Ag ΠΈΠ»ΠΈ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΡΠ»ΠΎΠΉΠ½ΠΎΠ³ΠΎ Π³Ρ€Π°Ρ„Π΅Π½Π° (ΠœΠ‘Π“). Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹ особСнности ΠΈ условия формирования Π΄Π²ΡƒΡ…ΠΌΠ΅Ρ€Π½Ρ‹Ρ… наноструктур ΠΈΠ· наночастиц ΠΈ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΡΠ»ΠΎΠΉΠ½ΠΎΠ³ΠΎ Π³Ρ€Π°Ρ„Π΅Π½Π° Π½Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ°Ρ… SiO2 (500 Π½ΠΌ) / Si (001) с использованиСм ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ спин-ΠΊΠΎΠ°Ρ‚ΠΈΠ½Π³Π° ΠΈ Π›Π΅Π½Π³ΠΌΡŽΡ€Π° – Π‘Π»ΠΎΠ΄ΠΆΠ΅Ρ‚Ρ‚. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π° связь ΠΌΠ΅ΠΆΠ΄Ρƒ структурным состояниСм НЧ ΠΈ магниторСзистивными, магнитооптичСскими ΠΈ оптичСскими свойствами Π½Π°Π½ΠΎΠΏΡ€ΠΈΠ±ΠΎΡ€Π½Ρ‹Ρ… систСм. УстановлСны зависимости оптичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΎΡ‚ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π° распрСдСлСния массивов наночастиц ΠΈΠ»ΠΈ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠœΠ‘Π“ Π½Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ΅. УстановлСны ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ формирования массивов спин-Π²Π΅Π½Ρ‚ΠΈΠ»ΡŒΠ½Ρ‹Ρ… ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΎΠ² ΠΏΡ€ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ проводящСй ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ Ag ΠΎΡ‚ 5 Π΄ΠΎ 20 Π½ΠΌ ΠΈ условий Π΅Π΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ (Π’ΠΎ = 600 К) ΠΈ ΠΈΡ… Π²ΠΊΠ»Π°Π΄ Π² Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ магнитосопротивлСния. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° тСорСтичСская модСль, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π°Ρ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ Π²ΠΊΠ»Π°Π΄Π° рассСивания элСктронов Π½Π° Ρ„Π΅Ρ€Ρ€ΠΎΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… частицах Π² элСктричСскоС сопротивлСниС массивов ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… наночастиц Π² проводящСй ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ Ag Π΄ΠΎ ΠΈ послС Сѐ Ρ‚Π΅Ρ€ΠΌΠΎΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ (Π’ΠΎ = 600 К). Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ измСнСния элСктричСского сопротивлСния наноструктурированных слоСв ΠΎΡ‚ условий Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ (Π’ΠΎ = 1100 К) ΠΈ исслСдовано влияниС дСкорирования повСрхности ΠΌΡƒΠ»ΡŒΡ‚ΠΈΡΠ»ΠΎΠΉΠ½ΠΎΠ³ΠΎ Π³Ρ€Π°Ρ„Π΅Π½Π° массивами наночастиц NiFe2O4 для ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊ Π²Ρ€Π΅Π΄Π½ΠΎΠΌΡƒ Π³Π°Π·Ρƒ NO2 Π½Π° 40 %, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ взаимодСйствия Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΏΡ€ΠΈΠ±ΠΎΡ€Π½Ρ‹Ρ… структур ΠΈ Π³Π°Π·Π° NO2. ИсслСдовано влияниС Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ (Π’ΠΎ = 1100 К) Π½Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ Π³Π°Π·ΠΎΠ²ΠΎΠΉ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠœΠ‘Π“ ΠΈ установлСны ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ условия Ρ‚Π΅Ρ€ΠΌΠΎΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ для получСния Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ эффСктивных Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… элСмСнтов с ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ ΡˆΡƒΠΌΠ°. Π˜Π·ΡƒΡ‡Π΅Π½ΠΎ влияниС Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠœΠ‘Π“ Π½Π° Π³Π°Π·ΠΎΠ²ΡƒΡŽ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠΎΠ² Π½Π° ΠΈΡ… основС. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдований ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΊΠ°ΠΊ практичСскиС Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈ построСнии наноструктурированных Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… элСмСнтов Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠΎΠ² Ρ€Π°Π·Π½ΠΎΠ³ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ назначСния.The thesis is devoted to the complex investigation of magnetoresistive and optical properties and sensitivity to gases of instrumentation systems based on arrays of nanoparticles (NP) NiFe2O4, Π‘ΠΎFe2O4, Fe3O4 in Ag conductive matrix or multilayered graphene. In this work an interconnection between the structural features of the NP and magnetoresistive, magnetooptical and optical properties of instrumentation systems was analyzed. The mechanisms of formation of arrays of spin-valve junctions while increasing the thickness of Ag conductive matrix from 5 to 20 nm, conditions of it temperature treatment and their influence on the value of magnetoresistance were established. Electrical resistance changes of nanostructured layers depends on conditions of thermal treatment (Tt = 1100 K) were experimentally studied and an effect of decoration of multilayered graphene by arrays of NiFe2O4 NPs for increasing of sensitivity to NO2 gas by 40% was investigated. The results of research can be utilized as practical recommendation while develop the nanostructured sensitive elements of the sensors with different functional purposes

    Expression of human thromboxane synthase using a baculovirus system

    Get PDF
    AbstractHuman thromboxane (TX) synthase (EC 5.3.99.5) was produced by the baculovirus expression system using cDNA encoding human TX synthase [(1991) Biochem. Biophys. Res. Commun. 78, 1479-1484]. A recombinant baculovirus TXS7 was expressed in Spodoptera frugiperda Sf9 insect cells. The expressed protein was recognized by monoclonal antibody, Kon 7 raised against human TX synthase [(1990) Blood 76, 80-85]. The recombinant TX synthase catalyzed the conversion of prostaglandin (PG) H2 to TXA2 and 12-hydroxy-heptadecatrienoic acid (HHT). Both conversions of PGH2 to TXA2 and HHT by the expressed TX synthase were completely inhibited by a specific TX synthase inhibitor, OKY-046 (5 ΞΌM)

    Expression of human thromboxane synthase using a baculovirus system

    Get PDF
    AbstractHuman thromboxane (TX) synthase (EC 5.3.99.5) was produced by the baculovirus expression system using cDNA encoding human TX synthase [(1991) Biochem. Biophys. Res. Commun. 78, 1479-1484]. A recombinant baculovirus TXS7 was expressed in Spodoptera frugiperda Sf9 insect cells. The expressed protein was recognized by monoclonal antibody, Kon 7 raised against human TX synthase [(1990) Blood 76, 80-85]. The recombinant TX synthase catalyzed the conversion of prostaglandin (PG) H2 to TXA2 and 12-hydroxy-heptadecatrienoic acid (HHT). Both conversions of PGH2 to TXA2 and HHT by the expressed TX synthase were completely inhibited by a specific TX synthase inhibitor, OKY-046 (5 ΞΌM)

    An automated Fpg-based FADU method for the detection of oxidative DNA lesions and screening of antioxidants

    Get PDF
    The oxidation of guanine to 8-oxo-2β€²-deoxyguanosine (8-oxo-dG) is one of the most abundant and best studied oxidative DNA lesions and is commonly used as a biomarker for oxidative stress. Over the last decades, various methods for the detection of DNA oxidation products have been established and optimized. However, some of them lack sensitivity or are prone to artifact formation, while others are time-consuming, which hampers their application in screening approaches. In this study, we present a formamidopyrimidine glycosylase (Fpg)-based method to detect oxidative lesions in isolated DNA using a modified protocol of the automated version of the fluorimetric detection of alkaline DNA unwinding (FADU) method, initially developed for the measurement of DNA strand breaks (Moreno-Villanueva et al., 2009. BMC Biotechnol. 9, 39). The FADU-Fpg method was validated using a plasmid DNA model, mimicking mitochondrial DNA, and the results were correlated to 8-oxo-dG levels as measured by LC–MS/MS. The FADU-Fpg method can be applied to analyze the potential of compounds to induce DNA strand breaks and oxidative lesions, as exemplified here by treating plasmid DNA with the peroxynitrite-generating molecule Sin-1. Moreover, this method can be used to screen DNA-protective effects of antioxidant substances, as exemplified here for a small-molecule, i.e., uric acid, and a protein, i.e., manganese superoxide dismutase, both of which displayed a dose-dependent protection against the generation of oxidative DNA lesions. In conclusion, the automated FADU-Fpg method offers a rapid and reliable measurement for the detection of peroxynitrite-mediated DNA damage in a cell-free system, rendering it an ideal method for screening the DNA-protective effects of antioxidant compounds.Deutsche Forschungsgemeinschaft (Grant BU 698/6-1)National Institutes of Health (U.S.) (Grant ES002109)National Institutes of Health (U.S.) (Grant CA026731
    • …
    corecore