10 research outputs found

    A Unifying View of Genome Rearrangements

    No full text
    Bergeron A, Mixtacki J, Stoye J. A Unifying View of Genome Rearrangements. In: Proc. of WABI 2006. LNBI. Vol 4175. SPRINGER-VERLAG BERLIN; 2006: 163-173.Genome rearrangements have been modeled by a variety of operations such as inversions, translocations, fissions, fusions, transpositions and block interchanges. The double cut and join operation, introduced by Yancopoulos et al., allows to model all the classical operations while simplifying the algorithms. In this paper we show a simple way to apply this operation to the most general type of genomes with a mixed collection of linear and circular chromosomes. We also describe a graph structure that allows simplifying the theory and distance computation considerably, as neither capping nor concatenation of the linear chromosomes are necessary

    Developmental and comparative transcriptomic identification of iridophore contribution to white barring in clownfish.

    No full text
    Actinopterygian fishes harbor at least eight distinct pigment cell types, leading to a fascinating diversity of colors. Among this diversity, the cellular origin of the white color appears to be linked to several pigment cell types such as iridophores or leucophores. We used the clownfish Amphiprion ocellaris, which has a color pattern consisting of white bars over a darker body, to characterize the pigment cells that underlie the white hue. We observe by electron microscopy that cells in white bars are similar to iridophores. In addition, the transcriptomic signature of clownfish white bars exhibits similarities with that of zebrafish iridophores. We further show by pharmacological treatments that these cells are necessary for the white color. Among the top differentially expressed genes in white skin, we identified several genes (fhl2a, fhl2b, saiyan, gpnmb, and apoD1a) and show that three of them are expressed in iridophores. Finally, we show by CRISPR/Cas9 mutagenesis that these genes are critical for iridophore development in zebrafish. Our analyses provide clues to the genomic underpinning of color diversity and allow identification of new iridophore genes in fish

    Genome duplication in the teleost fish <i>Tetraodon nigroviridis</i> reveals the early vertebrate proto-karyotype

    No full text
    International audienceTetraodon nigroviridis is a freshwater puffer fish with the smallest known vertebrate genome. Here, we report a draft genome sequence with long-range linkage and substantial anchoring to the 21 Tetraodon chromosomes. Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish. Comparison with other vertebrates and a urochordate indicates that fish proteins have diverged markedly faster than their mammalian homologues. Comparison with the human genome suggests ∼900 previously unannotated human genes. Analysis of the Tetraodon and human genomes shows that whole-genome duplication occurred in the teleost fish lineage, subsequent to its divergence from mammals. The analysis also makes it possible to infer the basic structure of the ancestral bony vertebrate genome, which was composed of 12 chromosomes, and to reconstruct much of the evolutionary history of ancient and recent chromosome rearrangements leading to the modern human karyotype
    corecore