34 research outputs found

    Current Induced Magnetization Dynamics in Nanostructures

    Get PDF
    Předkládaná dizertační práce pojednává o problematice pohybu doménových stěn (DS) vyvolaného spinově polarizovaným proudem v magnetických nanodrátech na bázi spinového ventilu NiFe/Cu/Co. Jedná se o tzv. efekt přenosu spinového momentu. Multivrstevnatý systém NiFe/Cu/Co, kde se doménová stěna pohybuje ve vrstvě NiFe, vykazuje velmi vysokou účinnost přenosu spinového momentu, což bylo v literatuře potvrzeno na základě magnetotransportních měření. Tato práce má za cíl pozorovat stav DS během jejich pohybu, pomocí fotoelektronové mikroskopie kombinované s kruhovým magnetickým dichroismem. Tato technika využívá synchrotronové záření, které svým časovým rozlišením umožňuje sledovat dynamickou odezvu magnetizace na elektrický proud. Podstatnou částí řešení byla optimizace růstu vrstev NiFe/Cu/Co kvůli snížení magnetické dipolární interakce mezi vrstvami. V práci je také řešen způsob přípravy nanodrátů litografickými metodami. Byly provedeny dva módy měření: i) kvazistatický, tj. pozorování DS před a po injekci proudu do nanodrátu a ii) dynamické měření, kde je DS sledována během působení proudového pulzu. S využitím kvazistatickém módu byla vypracována rozsáhlá statistika pohybu DS: i) byly naměřeny jejich vysoké rychlosti přesahující 600 m/s za působení průměrné proudové hustoty nutné k posuvu doménové stěny - 5x10^11 A/m^2; ii) DS jsou v systému NiFe/Cu/Co velmi silně zachycovány dipolární interakcí mezi NiFe a Co způsobenou nehomogenitou krystalové struktury ve vrstvě Co. V dynamickém módu bylo odhaleno, že působením Oerstedovského pole kolmého na nanodráty v rovině vzorku se magnetizace ve vrstvě NiFe silně natáčí. Tento efekt přispívá k vysokým rychlostem DS pozorovaných v nanodrátech NiFe/Cu/Co.This thesis deals with the study of current-induced magnetization dynamics and domain wall (DW) motion in NiFe/Cu/Co nanowires, induced by the so-called spin-transfer torque effect. Prior to this work, transport measurements had proven that in this trilayer system, DWs in NiFe can be moved with relatively low current densities, suggesting a particularly high spin-torque efficiency. The aim of this study has been to use photoemission electron microscopy combined with x-ray magnetic circular dichroism at synchrotron radiation sources to observe directly the magnetic configurations in the trilayers and their evolution during and after the application of nanosecond current pulses. An important step of the work has been to optimize the growth of the NiFe/Cu/Co layers, in the view of increasing interface quality and minimize interlayer coupling. The process of nanowire patterning by e-beam lithography has also been optimized. Two kinds of measurements have been carried out: i) quasi static measurements, where the domain configuration is observed before and after the application of current pulses and ii) dynamic measurements, where the magnetic configuration has been observed during the application of current pulses. The first measurements have allowed us to study the statistical behaviour of DWs under the application of current pulses: on one hand, the domain wall velocities reach extremely high values for relatively low current densities (up to 600 m/s for 5x10^11 A/m^2). On the other hand, DW motion over distances larger than 2-3 microns is strongly hindered by pinning. Time-resolved measurements during the current pulses, carried out for the first time by our team, have allowed us to demonstrate that the NiFe magnetization is strongly tilted in the direction transverse to the nanowire direction, due to the presence of a transverse Oersted field. This effect might contribute to the enhancement of DW velocities in the NiFe layers.

    OpenFlow deployment and concept analysis

    Get PDF
    Terms such as SDN and OpenFlow (OF) are often used in the research and development of data networks. This paper deals with the analysis of the current state of OpenFlow protocol deployment options as it is the only real representative protocol that enables the implementation of Software Defined Networking outside an academic world. There is introduced an insight into the current state of the OpenFlow specification development at various levels is introduced. The possible limitations associated with this concept in conjunction with the latest version (1.3) of the specification published by ONF are also presented. In the conclusion there presented a demonstrative security application addressing the lack of IPv6 support in real network devices since most of today's switches and controllers support only OF v1.0

    Picosecond pump pulses probe the relevance of hot electrons for the laser-induced phase transition in FeRh

    Full text link
    Recent ultrafast photoemission experiments showed signatures of an ultrafast modification of the electronic band structure in FeRh indicative of a ferromagnetic (FM) state that is initiated by a non-equilibrium occupation of the electronic states upon femtosecond laser excitation. We use ultrafast x-ray diffraction to examine the impact of hot electrons on the antiferromagnetic (AFM) to FM phase transition. By increasing the pump-pulse duration up to 10.5ps10.5\,\text{ps}, we eliminate hot electrons and see that the nucleation of FM domains still proceeds at the intrinsic timescale of 8ps8\,\text{ps}, which starts when the deposited energy surpasses the threshold energy. For long pulses, the phase transition proceeds considerably faster than predicted by a convolution of the dynamics observed for ultrafast excitation with the long pump pulse duration. We predict that quite generally, slow photoexcitation can result in a fast response, if the non-linear threshold behavior of a first-order phase transition is involved

    Disentangling nucleation and domain growth during a laser-induced phase transition

    Full text link
    We use ultrafast x-ray diffraction and the time-resolved polar magneto-optical Kerr effect to study the laser-induced metamagnetic phase transition in two FeRh films with thicknesses below and above the optical penetration depth. In the thin film, we identify an intrinsic 8 ps timescale for the lightinduced nucleation of ferromagnetic domains in the antiferromagnetic material that is substantially slower than the speed of sound. For the inhomogeneously excited thicker film, we additionally identify kinetics of out-of-plane domain growth mediated by near-equilibrium heat transport, which we experimentally verify by comparing Kerr effect experiments in front- and backside excitation geometry

    Accelerating the laser-induced phase transition in nanostructured FeRh via plasmonic absorption

    Full text link
    By ultrafast x-ray diffraction we show that the laser-induced magnetostructural phase transition in FeRh nanoislands proceeds faster and more complete than in continuous films. We observe an intrinsic 8 ps timescale for nucleation of ferromagnetic (FM) domains in both types of samples. For the continuous film, the substrate-near regions, which are not directly exposed to light, are only slowly transformed to the FM state by domain wall motion following heat transport. In contrast, numerical modeling of the plasmonic absorption in the investigated nanostructure reveals a strong contribution near the FeRh/MgO interface. On average, the absorption is larger and more homogeneous in the nanoislands, enabling the phase transition throughout the entire volume at the intrinsic nucleation timescale

    Microscale Metasurfaces for On-Chip Magnetic Flux Concentration

    Get PDF
    Magnetic metamaterials have demonstrated promising perspectives to improve the efficiency of magnetic flux concentrators. In this work, the effects of downscaling these devices for on-chip integration is investigated. The influence of the non-linear magnetic response of the ferromagnetic components, their magnetic irreversibility, the formation of magnetic domains, as well as the effects of geometry and size of the devices are scrutinized. The results demonstrate that the implementation of metasurfaces at the microscale opens up new technological possibilities for enhancing the performance of magnetic field detectors and remotely charging small electric devices, thus paving the way toward new approaches in information and communication technologies.</p

    Control of magnetic vortex states in FeGa microdisks : Experiments and micromagnetics

    Get PDF
    Magnetic vortices have been an interesting element in the past decades due to their flux-closure domain structures which can be stabilized at ground states in soft ferromagnetic microstructures. In this work, vortex states are shown to be nucleated and stabilized in FeGa and FeGa disks, which can be an upcoming candidate for applications in strain-induced electric field control of magnetic states owing to the high magnetostriction of the alloy. The magnetization reversal in the disks occurs by the formation of a vortex, double vortex or S-domain state. Micromagnetic simulations have been performed using the FeGa material parameters and the simulated magnetic states are in good agreement with the experimental results. The studies performed here can be essential for the use of FeGa alloy in low-power electronics
    corecore