21 research outputs found

    T Cells Integrate Local and Global Cues to Discriminate between Structurally Similar Antigens

    Get PDF
    International audienceT lymphocytes' ability to discriminate between structurally related antigens has been attributed to the unique signaling properties of the T cell receptor. However, recent studies have suggested that the output of this discrimination process is conditioned by environmental cues. Here, we demonstrate how the IL-2 cytokine, collectively generated by strongly activated T cell clones, can induce weaker T cell clones to proliferate. We identify the PI3K pathway as being critical for integrating the antigen and cytokine responses and for controlling cell-cycle entry. We build a hybrid stochastic/deterministic computational model that accounts for such signal synergism and demonstrates quantitatively how T cells tune their cell-cycle entry according to environmental cytokine cues. Our findings indicate that antigen discrimination by T cells is not solely an intrinsic cellular property but rather a product of integration of multiple cues, including local cues such as antigen quality and quantity, to global ones like the extracellular concentration of inflammatory cytokines

    T cell cytolytic capacity is independent of initial stimulation strength.

    Get PDF
    How cells respond to myriad stimuli with finite signaling machinery is central to immunology. In naive T cells, the inherent effect of ligand strength on activation pathways and endpoints has remained controversial, confounded by environmental fluctuations and intercellular variability within populations. Here we studied how ligand potency affected the activation of CD8+ T cells in vitro, through the use of genome-wide RNA, multi-dimensional protein and functional measurements in single cells. Our data revealed that strong ligands drove more efficient and uniform activation than did weak ligands, but all activated cells were fully cytolytic. Notably, activation followed the same transcriptional pathways regardless of ligand potency. Thus, stimulation strength did not intrinsically dictate the T cell-activation route or phenotype; instead, it controlled how rapidly and simultaneously the cells initiated activation, allowing limited machinery to elicit wide-ranging responses

    Inferring maps of forces inside cell membrane microdomains

    Get PDF
    International audienceMapping of the forces on biomolecules in cell membranes has spurred the development of effective labels, e.g., organic fluorophores and nanoparticles, to track trajectories of single biomolecules. Standard methods use particular statistics, namely the mean square displacement, to analyze the underlying dynamics. Here, we introduce general inference methods to fully exploit information in the experimental trajectories, providing sharp estimates of the forces and the diffusion coefficients in membrane microdomains. Rapid and reliable convergence of the inference scheme is demonstrated on trajectories generated numerically. The method is then applied to infer forces and potentials acting on the receptor of the toxin labeled by lanthanide-ion nanoparticles. Our scheme is applicable to any labeled biomolecule and results show its general relevance for membrane compartmentation. Cop. 2009 The American Physical Society
    corecore