1,131 research outputs found

    Towards visualisation of central-cell-effects in scanning-tunnelling-microscope images of subsurface dopant qubits in silicon

    Full text link
    Atomic-scale understanding of phosphorous donor wave functions underpins the design and optimisation of silicon based quantum devices. The accuracy of large-scale theoretical methods to compute donor wave functions is dependent on descriptions of central-cell-corrections, which are empirically fitted to match experimental binding energies, or other quantities associated with the global properties of the wave function. Direct approaches to understanding such effects in donor wave functions are of great interest. Here, we apply a comprehensive atomistic theoretical framework to compute scanning tunnelling microscopy (STM) images of subsurface donor wave functions with two central-cell-correction formalisms previously employed in the literature. The comparison between central-cell models based on real-space image features and the Fourier transform profiles indicate that the central-cell effects are visible in the simulated STM images up to ten monolayers below the silicon surface. Our study motivates a future experimental investigation of the central-cell effects via STM imaging technique with potential of fine tuning theoretical models, which could play a vital role in the design of donor-based quantum systems in scalable quantum computer architectures.Comment: Nanoscale 201

    A tunable, dual mode field-effect or single electron transistor

    Full text link
    A dual mode device behaving either as a field-effect transistor or a single electron transistor (SET) has been fabricated using silicon-on-insulator metal oxide semiconductor technology. Depending on the back gate polarisation, an electron island is accumulated under the front gate of the device (SET regime), or a field-effect transistor is obtained by pinching off a bottom channel with a negative front gate voltage. The gradual transition between these two cases is observed. This dual function uses both vertical and horizontal tunable potential gradients in non-overlapped silicon-on-insulator channel

    A hybrid metal/semiconductor electron pump for quantum metrology

    Full text link
    Electron pumps capable of delivering a current higher than 100pA with sufficient accuracy are likely to become the direct mise en pratique of the possible new quantum definition of the ampere. Furthermore, they are essential for closing the quantum metrological triangle experiment which tests for possible corrections to the quantum relations linking e and h, the electron charge and the Planck constant, to voltage, resistance and current. We present here single-island hybrid metal/semiconductor transistor pumps which combine the simplicity and efficiency of Coulomb blockade in metals with the unsurpassed performances of silicon switches. Robust and simple pumping at 650MHz and 0.5K is demonstrated. The pumped current obtained over a voltage bias range of 1.4mV corresponds to a relative deviation of 5e-4 from the calculated value, well within the 1.5e-3 uncertainty of the measurement setup. Multi-charge pumping can be performed. The simple design fully integrated in an industrial CMOS process makes it an ideal candidate for national measurement institutes to realize and share a future quantum ampere

    Crossing the Vascular Wall: Common and Unique Mechanisms Exploited by Different Leukocyte Subsets during Extravasation

    Get PDF
    Leukocyte extravasation is one of the essential and first steps during the initiation of inflammation. Therefore, a better understanding of the key molecules that regulate this process may help to develop novel therapeutics for treatment of inflammation-based diseases such as atherosclerosis or rheumatoid arthritis. The endothelial adhesion molecules ICAM-1 and VCAM-1 are known as the central mediators of leukocyte adhesion to and transmigration across the endothelium. Engagement of these molecules by their leukocyte integrin receptors initiates the activation of several signaling pathways within both leukocytes and endothelium. Several of such events have been described to occur during transendothelial migration of all leukocyte subsets, whereas other mechanisms are known only for a single leukocyte subset. Here, we summarize current knowledge on regulatory mechanisms of leukocyte extravasation from a leukocyte and endothelial point of view, respectively. Specifically, we will focus on highlighting common and unique mechanisms that specific leukocyte subsets exploit to succeed in crossing endothelial monolayers

    Curve classes on irreducible holomorphic symplectic varieties

    Full text link
    We prove that the integral Hodge conjecture holds for 1-cycles on irreducible holomorphic symplectic varieties of K3 type and of Generalized Kummer type. As an application, we give a new proof of the integral Hodge conjecture for cubic fourfolds.Comment: 15 page

    Valley filtering and spatial maps of coupling between silicon donors and quantum dots

    Get PDF
    Exchange coupling is a key ingredient for spin-based quantum technologies since it can be used to entangle spin qubits and create logical spin qubits. However, the influence of the electronic valley degree of freedom in silicon on exchange interactions is presently the subject of important open questions. Here we investigate the influence of valleys on exchange in a coupled donor/quantum dot system, a basic building block of recently proposed schemes for robust quantum information processing. Using a scanning tunneling microscope tip to position the quantum dot with sub-nm precision, we find a near monotonic exchange characteristic where lattice-aperiodic modulations associated with valley degrees of freedom comprise less than 2~\% of exchange. From this we conclude that intravalley tunneling processes that preserve the donor's ±x\pm x and ±y\pm y valley index are filtered out of the interaction with the ±z\pm z valley quantum dot, and that the ±x\pm x and ±y\pm y intervalley processes where the electron valley index changes are weak. Complemented by tight-binding calculations of exchange versus donor depth, the demonstrated electrostatic tunability of donor/QD exchange can be used to compensate the remaining intravalley ±z\pm z oscillations to realise uniform interactions in an array of highly coherent donor spins.Comment: 6 pages, 4 figures, 6 pages Supplemental Materia
    corecore