243 research outputs found

    Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees

    Get PDF
    The spread of infectious diseases crucially depends on the pattern of contacts among individuals. Knowledge of these patterns is thus essential to inform models and computational efforts. Few empirical studies are however available that provide estimates of the number and duration of contacts among social groups. Moreover, their space and time resolution are limited, so that data is not explicit at the person-to-person level, and the dynamical aspect of the contacts is disregarded. Here, we want to assess the role of data-driven dynamic contact patterns among individuals, and in particular of their temporal aspects, in shaping the spread of a simulated epidemic in the population. We consider high resolution data of face-to-face interactions between the attendees of a conference, obtained from the deployment of an infrastructure based on Radio Frequency Identification (RFID) devices that assess mutual face-to-face proximity. The spread of epidemics along these interactions is simulated through an SEIR model, using both the dynamical network of contacts defined by the collected data, and two aggregated versions of such network, in order to assess the role of the data temporal aspects. We show that, on the timescales considered, an aggregated network taking into account the daily duration of contacts is a good approximation to the full resolution network, whereas a homogeneous representation which retains only the topology of the contact network fails in reproducing the size of the epidemic. These results have important implications in understanding the level of detail needed to correctly inform computational models for the study and management of real epidemics

    Early-onset ventilator-associated pneumonia incidence in intensive care units: a surveillance-based study

    Get PDF
    ABSTRACT: BACKGROUND: The incidence of ventilator-associated pneumonia (VAP) within the first 48 hours of intensive care unit (ICU) stay has been poorly investigated. The objective was to estimate early-onset VAP occurrence in ICUs within 48 hours after admission. METHODS: We analyzed data from prospective surveillance between 01/01/2001 and 31/12/2009 in 11 ICUs of Lyon hospitals (France). The inclusion criteria were: first ICU admission, not hospitalized before admission, invasive mechanical ventilation during first ICU day, free of antibiotics at admission, and ICU stay >=48 hours. VAP was defined according to a national protocol. Its incidence was the number of events per 1,000 invasive mechanical ventilation-days. The Poisson regression model was fitted from day 2 (D2) to D8 to incident VAP to estimate the expected VAP incidence from D0 to D1 of ICU stay. RESULTS: Totally, 367 (10.8%) of 3,387 patients in 45,760 patient-days developed VAP within the first 9 days. The predicted cumulative VAP incidence at D0 and D1 was 5.3 (2.6-9.8) and 8.3 (6.1-11.1), respectively. The predicted cumulative VAP incidence was 23.0 (20.8-25.3) at D8. The proportion of missed VAP within 48 hours from admission was 11% (9%-17%). CONCLUSIONS: Our study indicates underestimation of early-onset VAP incidence in ICUs, if only VAP occurring [greater than or equal to]48 hours is considered to be hospital-acquired. Clinicians should be encouraged to develop a strategy for early detection after ICU admission

    HCV Coinfection Associated with Slower Disease Progression in HIV-Infected Former Plasma Donors Naïve to ART

    Get PDF
    It remains controversial how HCV coinfection influences the disease progression during HIV-1 infection. This study aims to define the influence of HCV infection on the replication of HIV-1 and the disease progression in HIV-infected former plasma donors (FPDs) naïve to ART.168 HIV-1-infected FPDs were enrolled into a cohort study from Anhui province in central China, and thereafter monitored at month 3, 9, 15, 21 and 33. Fresh whole blood samples were used for CD4+ T-cell counting. Their plasma samples were collected and stored for quantification of HIV-1 viral loads and for determination of HCV and Toxoplasma. Out of 168 HIV-infected FBDs, 11.9% (20 cases), 80.4% (135 cases) and 7.7% (13 cases) were infected with HIV-1 alone, HIV-1/HCV and HIV/HCV/Toxoplasma, respectively. During the 33-month follow-up, only 35% (7 out of 20 cases) HIV-1 mono-infected subjects remained their CD4+ T-cell counts above 200 cells/µl and retained on the cohort study, which was significantly lower than 56% (75 out of 135 cases) for HIV/HCV group and 69% (9 out of 13 cases) for HIV/HCV/Toxoplasma group (p<0.05). CD4+ T cells in HIV mono infection group were consistently lower than that in HIV/HCV group (p = 0.04, 0.18, 0.03 and 0.04 for baseline, month 9, month 21 and month 33 visit, respectively). In accordance with those observations, HIV viral loads in HIV mono-infection group were consistently higher than that in HIV/HCV group though statistical significances were only reached at baseline (p = 0.04).These data indicated HCV coinfection with HIV-1 is associated with the slower disease progression at the very late stage when comparing with HIV-1 mono-infection. The coinfection of Toxoplasma with HIV and HCV did not exert additional influence on the disease progression. It will be highly interesting to further explore the underlying mechanism for this observation in the future

    Design and construction of the MicroBooNE detector

    Get PDF
    This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported

    Prognostic value of Dicer expression in human breast cancers and association with the mesenchymal phenotype

    Get PDF
    Background: Dicer, a ribonuclease, is the key enzyme required for the biogenesis of microRNAs and small interfering RNAs and is essential for both mammalian development and cell differentiation. Recent evidence indicates that Dicer may also be involved in tumourigenesis. However, no studies have examined the clinical significance of Dicer at both the RNA and the protein levels in breast cancer.Methods: In this study, the biological and prognostic value of Dicer expression was assessed in breast cancer cell lines, breast cancer progression cellular models, and in two well-characterised sets of breast carcinoma samples obtained from patients with long-term follow-up using tissue microarrays and quantitative reverse transcription-PCR.Results: We have found that Dicer protein expression is significantly associated with hormone receptor status and cancer subtype in breast tumours (ER P=0.008; PR P=0.019; cancer subtype P=0.023, luminal A P=0.0174). Dicer mRNA expression appeared to have an independent prognostic impact in metastatic disease (hazard ratio=3.36, P=0.0032). In the breast cancer cell lines, lower Dicer expression was found in cells harbouring a mesenchymal phenotype and in metastatic bone derivatives of a breast cancer cell line. These findings suggest that the downregulation of Dicer expression may be related to the metastatic spread of tumours.Conclusion: Assessment of Dicer expression may facilitate prediction of distant metastases for patients suffering from breast cancer

    Muon (g-2) Technical Design Report

    Get PDF
    The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval
    corecore