130 research outputs found

    Recording ten-fold larger IKr conductances with automated patch clamping using equimolar Cs+ solutions

    Get PDF
    Background: The rapid delayed rectifier potassium current (IKr) is important for cardiac repolarization and is most often involved in drug-induced arrhythmias. However, accurately measuring this current can be challenging in human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes because of its small current density. Interestingly, the ion channel conducting IKr, hERG channel, is not only permeable to K+ ions but also to Cs+ ions when present in equimolar concentrations inside and outside of the cell.Methods: In this study, IhERG was measured from Chinese hamster ovary (CHO)-hERG cells and hiPSC-CM using either Cs+ or K+ as the charge carrier. Equimolar Cs+ has been used in the literature in manual patch-clamp experiments, and here, we apply this approach using automated patch-clamp systems. Four different (pre)clinical drugs were tested to compare their effects on Cs+- and K+-based currents.Results: Using equimolar Cs+ solutions gave rise to approximately ten-fold larger hERG conductances. Comparison of Cs+- and K+-mediated currents upon application of dofetilide, desipramine, moxifloxacin, or LUF7244 revealed many similarities in inhibition or activation properties of the drugs studied. Using equimolar Cs+ solutions gave rise to approximately ten-fold larger hERG conductances. In hiPSC-CM, the Cs+-based conductance is larger compared to the known K+-based conductance, and the Cs+ hERG conductance can be inhibited similarly to the K+-based conductance.Conclusion: Using equimolar Cs+ instead of K+ for IhERG measurements in an automated patch-clamp system gives rise to a new method by which, for example, quick scans can be performed on effects of drugs on hERG currents. This application is specifically relevant when such experiments are performed using cells which express small IKr current densities in combination with small membrane capacitances

    Open-Access-Projekte wissenschaftlicher Einrichtungen aus Berlin und Brandenburg 2016

    Get PDF
    Im Spätsommer 2016 begannen die Planungen der Open-Access-Teams der Freien Universität, der Humboldt-Universität und der Technischen Universität Berlin für die internationale Open Access Week 2016. In einem Call for Posters wurden Berliner und Brandenburger Open-Access-Projekte dazu aufgerufen, ihre Aktivitäten in einer Ausstellung vorzustellen. Die Publikation dokumentiert die Posterausstellung und Podiumsdiskussion zur Open Access Week 2016. Sie enthält 30 Poster inklusive Beschreibungen und Links zu den Originalversionen in Druckqualität, ergänzt um Fotos einer Abendveranstaltung bei Wikimedia Deutschland.In late summer 2016 the open access teams of the Freie Universität, the Humboldt-Universität and the Technische Universität Berlin started their plans for the international Open Access Week 2016. In a call for posters, open access projects from Berlin and Brandenburg were requested to present their activities in a poster exhibition. The publication documents the poster exhibition and panel discussion during the Open Access Week 2016. It contains all posters including abstracts and links to the original versions in print quality, supplemented by photos from the Wikimedia event

    Entanglement between a diamond spin qubit and a photonic time-bin qubit at telecom wavelength

    Full text link
    We report on the realization and verification of quantum entanglement between an NV electron spin qubit and a telecom-band photonic qubit. First we generate entanglement between the spin qubit and a 637 nm photonic time-bin qubit, followed by photonic quantum frequency conversion that transfers the entanglement to a 1588 nm photon. We characterize the resulting state by correlation measurements in different bases and find a lower bound to the Bell state fidelity of F = 0.77 +/- 0.03. This result presents an important step towards extending quantum networks via optical fiber infrastructure

    Open in Action in Berlin-Brandenburg

    Get PDF
    Im Spätsommer 2016 begannen die Planungen der Open-Access-Teams der Freien Universität, der Humboldt-Universität und der Technischen Universität Berlin für die internationale Open Access Week 2016. In einem Call for Posters wurden Berliner und Brandenburger Open-Access-Projekte dazu aufgerufen, ihre Aktivitäten in einer Ausstellung vorzustellen. Die Publikation dokumentiert die Posterausstellung und Podiumsdiskussion zur Open Access Week 2016. Sie enthält 30 Poster inklusive Beschreibungen und Links zu den Originalversionen in Druckqualität, ergänzt um Fotos einer Abendveranstaltung bei Wikimedia Deutschland.In late summer 2016 the open access teams of the Freie Universität, the Humboldt-Universität and the Technische Universität Berlin started their plans for the international Open Access Week 2016. In a call for posters, open access projects from Berlin and Brandenburg were requested to present their activities in a poster exhibition. The publication documents the poster exhibition and panel discussion during the Open Access Week 2016. It contains all posters including abstracts and links to the original versions in print quality, supplemented by photos from the Wikimedia event.Not Reviewe

    p38-MK2 signaling axis regulates RNA metabolism after UV-light-induced DNA damage

    Get PDF
    UV-light-induced DNA damage affects RNA metabolism but the underlying signalling pathways are largely unexplored. Here, the authors show that UV light triggers p38-MK2-mediated phosphorylation of the NELF complex, promoting its release from chromatin and concurrent transcriptional elongation

    5-teilige Sonderausgabe des KOBV-Newsletters – 24. bis 30. Oktober 2016

    Get PDF
    An der internationalen Open-Access-Woche 2016 vom 24.-28. Oktober war der KOBV erstmalig mit einem Online „Publishing Event“ beteiligt. An fünf aufeinanderfolgenden Tagen erschien täglich eine Sonderausgabe des KOBV- Newsletters zu ausgewählten Open-Access-Themen. Die einzelnen Beiträge sind in dieser Sonderedition als Online-Reader zusammengestellt. Der aktuelle Diskussionsstand zum jeweiligen Thema wird von Expertinnen und Experten in kurzen Übersichtsartikeln vorgestellt und mit Praxistipps ergänzt. Zielgruppe sind vor allem Bibliothekare und Bibliothekarinnen, die sich einen schnellen Überblick zu Open Access verschaffen wollen

    Multiple Potential Molecular Contributors to Atrial Hypocontractility Caused by Atrial Tachycardia Remodeling in Dogs

    Get PDF
    Background-Atrial fibrillation impairs atrial contractility, inducing atrial stunning that promotes thromboembolic stroke. Action potential (AP)-prolonging drugs are reported to normalize atrial hypocontractility caused by atrial tachycardia remodeling (ATR). Here, we addressed the role of AP duration (APD) changes in ATR-induced hypocontractility. Methods and Results-ATR (7-day tachypacing) decreased APD (perforated patch recording) by approximate to 50%, atrial contractility (echocardiography, cardiomyocyte video edge detection), and [Ca2+](i) transients. ATR AP waveforms suppressed [Ca2+](i) transients and cell shortening of control cardiomyocytes; whereas control AP waveforms improved [Ca2+](i) transients and cell shortening in ATR cells. However, ATR cardiomyocytes clamped with the same control AP waveform had approximate to 60% smaller [Ca2+](i) transients and cell shortening than control cells. We therefore sought additional mechanisms of contractile impairment. Whole-cell voltage clamp revealed reduced I-CaL; I-CaL inhibition superimposed on ATR APs further suppressed [Ca2+](i) transients in control cells. Confocal microscopy indicated ATR-impaired propagation of the Ca2+ release signal to the cell center in association with loss of t-tubular structures. Myofilament function studies in skinned permeabilized cardiomyocytes showed altered Ca2+ sensitivity and force redevelopment in ATR, possibly due to hypophosphorylation of myosin-binding protein C and myosin light-chain protein 2a (immunoblot). Hypophosphorylation was related to multiple phosphorylation system abnormalities where protein kinase A regulatory subunits were downregulated, whereas autophosphorylation and expression of Ca2+-calmodulin-dependent protein kinase II delta and protein phosphatase 1 activity were enhanced. Recovery of [Ca2+](i) transients and cell shortening occurred in parallel after ATR cessation. Conclusions-Shortening of APD contributes to hypocontractility induced by 1-week ATR but accounts for it only partially. Additional contractility-suppressing mechanisms include I-CaL current reduction, impaired subcellular Ca2+ signal transmission, and altered myofilament function associated with abnormal myosin and myosin-associated protein phosphorylation. The complex mechanistic basis of the atrial hypocontractility associated with AF argues for upstream therapeutic targeting rather than interventions directed toward specific downstream pathophysiological derangements. (Circ Arrhythm Electrophysiol. 2010;3:530-541.

    Arctic soil methane sink increases with drier conditions and higher ecosystem respiration

    Get PDF
    Arctic wetlands are known methane (CH4) emitters but recent studies suggest that the Arctic CH4 sink strength may be underestimated. Here we explore the capacity of well-drained Arctic soils to consume atmospheric CH4 using >40,000 hourly flux observations and spatially distributed flux measurements from 4 sites and 14 surface types. While consumption of atmospheric CH4 occurred at all sites at rates of 0.092 ± 0.011 mgCH4 m−2 h−1 (mean ± s.e.), CH4 uptake displayed distinct diel and seasonal patterns reflecting ecosystem respiration. Combining in situ flux data with laboratory investigations and a machine learning approach, we find biotic drivers to be highly important. Soil moisture outweighed temperature as an abiotic control and higher CH4 uptake was linked to increased availability of labile carbon. Our findings imply that soil drying and enhanced nutrient supply will promote CH4 uptake by Arctic soils, providing a negative feedback to global climate change

    Kv1.1 potassium channel subunit deficiency alters ventricular arrhythmia susceptibility, contractility, and repolarization

    Get PDF
    Epilepsy-associated Kv1.1 voltage-gated potassium channel subunits encoded by the Kcna1 gene have traditionally been considered absent in heart, but recent studies reveal they are expressed in cardiomyocytes where they could regulate intrinsic cardiac electrophysiology. Although Kv1.1 now has a demonstrated functional role in atria, its role in the ventricles has never been investigated. In this work, electrophysiological, histological, and gene expression approaches were used to explore the consequences of Kv1.1 deficiency in the ventricles of Kcna1 knockout (KO) mice at the organ, cellular, and molecular levels to determine whether the absence of Kv1.1 leads to ventricular dysfunction that increases the risk of premature or sudden death. When subjected to intracardiac pacing, KO mice showed normal baseline susceptibility to inducible ventricular arrhythmias (VA) but resistance to VA under conditions of sympathetic challenge with isoproterenol. Echocardiography revealed cardiac contractile dysfunction manifesting as decreased ejection fraction and fractional shortening. In whole-cell patch-clamp recordings, KO ventricular cardiomyocytes exhibited action potential prolongation indicative of impaired repolarization. Imaging, histological, and transcript analyses showed no evidence of structural or channel gene expression remodeling, suggesting that the observed deficits are likely electrogenic due to Kv1.1 deficiency. Immunoblots of patient heart samples detected the presence of Kv1.1 at relatively high levels, implying that Kv1.1 contributes to human cardiac electrophysiology. Taken together, this work describes an important functional role for Kv1.1 in ventricles where its absence causes repolarization and contractility deficits but reduced susceptibility to arrhythmia under conditions of sympathetic drive

    Dysfunction in the βII Spectrin-Dependent Cytoskeleton Underlies Human Arrhythmia.

    Get PDF
    Background: The cardiac cytoskeleton plays key roles in maintaining myocyte structural integrity in health and disease. In fact, human mutations in cardiac cytoskeletal elements are tightly linked with cardiac pathologies including myopathies, aortopathies, and dystrophies. Conversely, the link between cytoskeletal protein dysfunction in cardiac electrical activity is not well understood, and often overlooked in the cardiac arrhythmia field. Methods and Results: Here, we uncover a new mechanism for the regulation of cardiac membrane excitability. We report that βII spectrin, an actin-associated molecule, is essential for the post-translational targeting and localization of critical membrane proteins in heart. βII spectrin recruits ankyrin-B to the cardiac dyad, and a novel human mutation in the ankyrin-B gene disrupts the ankyrin-B/βII spectrin interaction leading to severe human arrhythmia phenotypes. Mice lacking cardiac βII spectrin display lethal arrhythmias, aberrant electrical and calcium handling phenotypes, and abnormal expression/localization of cardiac membrane proteins. Mechanistically, βII spectrin regulates the localization of cytoskeletal and plasma membrane/sarcoplasmic reticulum protein complexes that include the Na/Ca exchanger, RyR2, ankyrin-B, actin, and αII spectrin. Finally, we observe accelerated heart failure phenotypes in βII spectrin-deficient mice. Conclusions: Our findings identify βII spectrin as critical for normal myocyte electrical activity, link this molecule to human disease, and provide new insight into the mechanisms underlying cardiac myocyte biology
    corecore