10,055 research outputs found

    On Multipolar Analytical Potentials for Galaxies

    Full text link
    We present analytical potential-density pairs in three dimensions for the gravitational field of galaxies, obtained by thickening the multipolar expansion up to the quadrupole term. These may be interpreted as generalizations of the Miyamoto and Nagai potential-density pairs. With a suitable restriction on the possible values of the multipole moments, the density distributions are positive and monotone decreasing functions of the radial and axial coordinates

    A General Relativistic Model for the Gravitational Field of Active Galactic Nuclei Surrounded by a Disk

    Get PDF
    An exact but simple general relativistic model for the gravitational field of active galactic nuclei is constructed, based on the superposition in Weyl coordinates of a black hole, a Chazy-Curzon disk and two rods, which represent matter jets. The influence of the rods on the matter properties of the disk and on its stability is examined. We find that in general they contribute to destabilize the disk. Also the oscillation frequencies for perturbed circular geodesics on the disk are computed, and some geodesic orbits for the superposed metric are numerically calculated.Comment: 24 pages, LATEX. Phys. Rev. D (in press

    Relativistic Models of Galaxies

    Get PDF
    A special form of the isotropic metric in cylindrical coordinates is used to construct what may be interpreted as the General Relativistic versions of some wellknown potential-density pairs used in Newtonian gravity to model three-dimensional distributions of matter in galaxies. The components of the energy-momentum tensor are calculated for the first two Miyamoto-Nagai potentials and a particular potential due to Satoh. The three potentials yield distributions of matter in which all tensions are pressures and all energy conditions are satisfied for certain ranges of the free parameters. A few non-planar geodesic orbits are computed for one of the potentials and compared with the Newtonian case. Rotation is also incorporated to the models and the effects of the source rotation on the rotation profile are calculated as first order corrections by using an approximate form of the Kerr metric in isotropic coordinates.Comment: 18 pages, 23 eps figures, uses mn2e.cls style file, to be published in MNRA

    Newtonian and General Relativistic Models of Spherical Shells

    Full text link
    A family of spherical shells with varying thickness is derived by using a simple Newtonian potential-density pair. Then, a particular isotropic form of a metric in spherical coordinates is used to construct a General Relativistic version of the Newtonian family of shells. The matter of these relativistic shells presents equal azimuthal and polar pressures, while the radial pressure is a constant times the tangential pressure. We also make a first study of stability of both the Newtonian and relativistic families of shells.Comment: 13 pages, 5 figures, accepted for publication in MNRA

    Exact General Relativistic Discs and the Advance of Perihelion

    Get PDF
    The advance of perihelion for geodesic motion on the galactic plane of some exact general relativistic disc solutions is calculated. Approximate analytical and numerical results are presented for the static Chazy-Curzon and the Schwarzschild discs in Weyl coordinates, the Schwarzschid disc in isotropic coordinantes and the stationary Kerr disc in the Weyl-Lewis-Papapetrou metrics. It is found that for these disc models the advance of perihelion may be an increasing or decreasing function of the orbital excentricity. The precession due to Newtonian gravity for these disc models is also calculated.Comment: 11 pages, 8 figure

    The need for dark matter in galaxies

    Full text link
    Cooperstock and Tieu have proposed a model to account for galactic rotation curves without invoking dark matter. I argue that no model of this type can work
    corecore