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2Departamento de Matemática Aplicada-IMECC, Universidade Estadual de Campinas 13083-970 Campinas, S. P., Brazil

Accepted 2005 July 18. Received 2005 July 14; in original form 2005 March 23

ABSTRACT
A special form of the isotropic metric in cylindrical coordinates is used to construct what may
be interpreted as the general relativistic versions of some well-known potential–density pairs
used in Newtonian gravity to model three-dimensional distributions of matter in galaxies. The
components of the energy-momentum tensor are calculated for the first two Miyamoto–Nagai
potentials and a particular potential due to Satoh. The three potentials yield distributions of
matter in which all tensions are pressures and all energy conditions are satisfied for certain
ranges of the free parameters. A few non-planar geodesic orbits are computed for one of
the potentials and compared with the Newtonian case. Rotation is also incorporated in the
models and the effects of the source rotation on the rotation profile are calculated as first-order
corrections by using an approximate form of the Kerr metric in isotropic coordinates.

Key words: relativity – stellar dynamics – celestial mechanics – galaxies: kinematics and
dynamics.

1 I N T RO D U C T I O N

Analytical axially symmetric solutions of gravitating matter provide very accurate models for the mass distribution of galaxies. In Newtonian
theory, models for globular clusters and spherical galaxies were presented by Plummer (1911) and King (1966). On the other hand, to
describe the mass distribution within highly flattened axisymmetric galaxies, Toomre (1963) found a family of density potential pairs, the
first of which was first derived by Kuzmin (1956). Later, Miyamoto & Nagai (1975) and Nagai & Miyamoto (1976) ‘thickened-up’ Toomre’s
series of disc models to yield pairs of three-dimensional potential and density functions. In a similar way, Satoh (1980) obtained a family
of three-dimensional axisymmetric mass distributions from the higher-order Plummer models. For a detailed account and the description of
other potential–density pairs used in galactic models, see for example Binney & Tremaine (1987).

In general relativity, several exact disc-like solutions have been found, among them the static discs without radial pressure studied by
Bonnor & Sackfield (1968) and Morgan & Morgan (1969), and discs with radial pressure by Morgan & Morgan (1970). Several classes of
exact solutions of the Einstein field equations corresponding to static thin discs with or without radial pressure have been obtained by different
authors (Lynden-Bell & Pineault 1978; Letelier & Oliveira 1987; Lemos 1989; Bičák, Lynden-Bell & Katz 1993a; Bičák, Lynden-Bell &
Pichon 1993b; Lemos & Letelier 1993, 1994, 1996; González & Espitia 2003; Garcı́a & González 2004). Thin rotating discs that can be
considered as a source of the Kerr metric were presented by Bičák & Ledvinka (1993), while rotating discs with heat flow were studied by
González & Letelier (2000). Also thin discs with radial tension (González & Letelier 1999), magnetic fields (Letelier 1999) and magnetic and
electric fields (Katz, Bičák & Lynden-Bell 1999) were considered. The non-linear superposition of a disc and a black hole was first obtained
by Lemos & Letelier (1993). Perfect fluid discs with haloes were studied by Vogt & Letelier (2003) and charged perfect fluid discs by Vogt
& Letelier (2004). The stability of some general relativistic thin disc models using a first-order perturbation of the energy-momentum tensor
was investigated by Ujevic & Letelier (2004). For a survey on self-gravitating relativistic discs, see for instance Karas, Huré & Semerák
(2004).

In the works cited above, an inverse style method was used to solve the Einstein equations, i.e. the energy-momentum tensor is computed
from the metric representing the disc. Another approach to generate discs is by solving the Einstein equations given a source (energy-
momentum tensor). Essentially, they are obtained by solving a Riemann–Hilbert problem and are highly non-trivial. This has been used by
the Jena group to generate several exact solutions of discs (Neugebauer & Meinel 1995; Klein 1997, 2001, 2002, 2003a,b; Klein & Richter
1999; Frauendiener & Klein 2001).
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Relativistic models of galaxies 269

Recently, González & Letelier (2004) constructed models of static relativistic thick discs in various coordinate systems. Although the
discs have constant thickness, the matter density decreases rapidly with radius and the z coordinate, and in principle they may also be used to
represent both the disc part and the central bulges of galaxies.

The aim of this work is to consider more realistic three-dimensional models for the gravitational field of galaxies in a general relativistic
context. The distribution of matter fills all the space, but the total mass is finite. Essentially we formulate general relativistic versions in
isotropic coordinates of the potential–density pairs deduced by Miyamoto & Nagai (1975), Nagai & Miyamoto (1976) and Satoh (1980).
Also, the influence of galactic rotation on the rotation profile of test particles on the galactic plane is estimated using an approximate form of
the Kerr metric in isotropic coordinates.

The paper is organized as follows. In Section 2 we present a special form of the isotropic metric and the components of the energy-
momentum tensor as functions of the metric coefficients, from which the physical properties of the galactic matter distributions can be
calculated. We also derive expressions for the tangential circular velocity and specific angular momentum of test particles in circular motion
on the galactic plane. These results are then applied in Sections 3 and 4 to construct general relativistic analogues of two Miyamoto–Nagai
models and one galactic model proposed by Satoh. As an example of application of these models, in Section 5 we calculate a few geodesic
orbits and compare them with the Newtonian case. In Section 6 we deduce the first-order effects of galactic rotation on the tangential circular
velocity of geodesic motion of particles on the galactic plane using an approximate form of the Kerr metric in isotropic coordinates, and we
apply the result to the above-mentioned models. Finally, we summarize our results in Section 7.

2 E I N S T E I N E QUAT I O N S I N I S OT RO P I C C O O R D I NAT E S

Let us consider the particular case of axial symmetric space–times whose metric can be written in an isotropic form in cylindrical coordinates
(t , R, z, ϕ),

ds2 = eν(R,z)c2dt2 − eλ(R,z)
(

dR2 + dz2 + R2dϕ2
)

. (1)

In order to construct a general relativistic formulation of the known Newtonian models for the mass distribution of galaxies, it is convenient
to use a particular form of metric equation (1), suggested by generalizing the form of the Schwarzschild metric in isotropic coordinates

ds2 =
(

1 − f

1 + f

)2

c2dt2 − (1 + f )4(dR2 + dz2 + R2dϕ2), (2)

where f = f (R, z). Metric equation (2) gives the Schwarzschild solution when f is taken as

f = G M

2c2
√

R2 + z2
. (3)

For metric equation (2), the Einstein equations Gµν = −(8 πG/c4) T µν yield the following expressions for the components of the energy-
momentum tensor:1

T t
t = − c4

2πG(1 + f )5

(
f,R R + f,zz + f,R

R

)
, (4a)

T R
R = c4

4πG(1 + f )5(1 − f )

(
f f,zz + f f,R

R
+ 2 f 2

,R − f 2
,z

)
, (4b)

T z
z = c4

4πG(1 + f )5(1 − f )

(
f f,R R + f f,R

R
+ 2 f 2

,z − f 2
,R

)
, (4c)

T R
z = T z

R = − c4

4πG(1 + f )5(1 − f )
( f f,Rz − 3 f,R f,z), (4d)

T ϕ
ϕ = c4

4πG(1 + f )5(1 − f )

[
f ( f,R R + f,zz) − f 2

,R − f 2
,z

]
. (4e)

The energy density is given by σ = T t
t /c2, and the stresses (pressures or tensions) along a particular direction read Pi = −T i

i when the
energy-momentum tensor is diagonal. It is a surprising fact that the component T t

t is proportional to the usual Laplacian of the function f in
flat cylindrical coordinates. Note that in the Newtonian limit when f � 1, equation (4a) reduces to the Poisson equation

∇2� = 4πGρN , (5)

if the function f is related to the gravitational potential � by

f = − �

2c2
. (6)

1 The Einstein tensor was computed using MAPLE and the result was checked using REDUCE.
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270 D. Vogt and P. S. Letelier

The energy-momentum tensor will be diagonal (T R
z = T z

R = 0) provided f has the form

f = C√
w(R) + g(z)

, (7)

where C is a constant and w(R) and g(z) are arbitrary functions. Furthermore, the components T R
R and T ϕ

ϕ will be equal (isotropic radial and
azimuthal stresses) only if w(R) = R2.

Two physical quantities of interest related to the circular motion of test particles along geodesics on the galactic plane are the tangential
velocity vc (rotation profile) and the specific angular momentum h. The assumption of geodesic motion is valid for the case of a particle
moving in a very diluted gas like the gas made of stars that models a galaxy disc. For metric equation (1) the expressions are (Vogt & Letelier
2003)

v2
c = c2 R2 eλ(eν),R

eν(R2eλ),R
, (8)

h = cR2eλ

√
(eν),R

eν(R2eλ),R − R2eλ(eν),R
, (9)

where all functions are evaluated on z = 0. The angular momentum can be used to determine the stability of circular orbits on the galactic
plane by using an extension of the Rayleigh criteria of stability of a fluid at rest in a gravitational field (Rayleigh 1917; see also Landau &
Lifshitz 1987)

h
dh

dR

∣∣∣∣
z=0

> 0. (10)

For the specific metric form equation (2), equations (8) and (9) simplify to

v2
c = − 2c2 R f,R

(1 − f )(1 + f + 2R f,R)
, (11)

h = cR2 (1 + f )2

√
−2 f,R

R
[
1 − f 2 + 2R f,R(2 − f )

] . (12)

3 G E N E R A L R E L AT I V I S T I C M I YA M OTO – NAG A I M O D E L S

3.1 First model

The simplest gravitational potential proposed by Miyamoto & Nagai (1975) and Nagai & Miyamoto (1976) to represent stratifications of
mass in the central bulges and in the disc parts of galaxies is given by

�(R, z) = − G M√
R2 + (a + √

z2 + b2)2
, (13)

where a and b are positive constants. The corresponding three-dimensional density distribution ρ N (R, z) is easily derived from Poisson
equation (5)

ρN (R, z) = b2 M

4π

a R2 + (a + 3
√

z2 + b2)(a + √
z2 + b2)2

[R2 + (a + √
z2 + b2)2]5/2(z2 + b2)3/2

. (14)

Now we consider the function f (R, z) defined in the previous section as

f (R, z) = G M

2c2
√

R2 + (a + √
z2 + b2)2

. (15)

Substituting equation (15) in equations (4a)–(4e) we find the following expressions for the non-zero components of the energy-momentum
tensor

σ̄ = b̃2[ã R̃2 + (ã + ξ )2(ã + 3ξ )]

4πξ 3
[
1 +

√
R̃2 + (ã + ξ )2

]5 , (16a)

p̄R = p̄ϕ = b̃2

8πξ 3

[
ã R̃2 + (ã + ξ )2(ã + 2ξ )

]
[
1 +

√
R̃2 + (ã + ξ )2

]5[ − 1 +
√

R̃2 + (ã + ξ )2
] , (16b)

p̄z = b̃2(ã + ξ )2

4πξ 2
[
1 +

√
R̃2 + (ã + ξ )2

]5[ − 1 +
√

R̃2 + (ã + ξ )2
] , (16c)
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Figure 1. Surface plot and level curves of the energy density σ̄ equation (16a) and ‘effective Newtonian density’ ρ̄ equation (17) with parameters ã = 1 and
b̃ = 2.

where the variables and parameters were rescaled in terms of the Schwarzschild radius in isotropic spherical coordinates r s = GM/(2c2):2

R̃ = R/rs, z̃ = z/rs, ã = a/rs, b̃ = b/rs, σ = (M/r 3
s )σ̄ , pi = (Mc2/r 3

s ) p̄i and ξ =
√

z̃2 + b̃2. The ‘effective Newtonian density’ ρ = σ +
pR/c2 + pϕ/c2 + pz/c2 reads

ρ̄ = b̃2
√

R̃2 + (ã + ξ )2
[
ã R̃2 + (ã + ξ )2(ã + 3ξ )

]
4πξ 3

[
1 +

√
R̃2 + (ã + ξ )2

]5[ − 1 +
√

R̃2 + (ã + ξ )2
] , (17)

with ρ = (M/r 3
s )ρ̄.

The strong energy condition requires that ρ � 0, whereas the weak energy condition imposes the condition σ � 0. The dominant energy
condition requires |pR/σ | � c2, |pz/σ | � c2 and |pϕ/σ | � c2. Equations (16a)–(17) show that the densities are positive everywhere and
so are the stresses (pressures) if we impose the condition ã + b̃ > 1. Moreover, we have isotropic pressures along the radial and azimuthal
directions. When R̃, z̃, ã, b̃ � 1, the first-order expansion of equation (17) is

ρ̄ ≈ b̃2
[
ã R̃2 + (ã + ξ )2(ã + 3ξ )

]
4πξ 3

[
R̃2 + (ã + ξ )2

]5/2

[
1 − 4√

R̃2 + (ã + ξ )2

]
. (18)

Thus, the first-order general relativistic correction lowers the mass density.
In Figs 1 and 2 we show the surfaces and level curves of the densities and pressures equations (16a)–(17) for parameters ã = 1 and

b̃ = 2, and the same physical quantities for parameters ã = 1 and b̃ = 1 are displayed in Figs 3 and 4. As in the Newtonian case, the lower the
ratio b/a, the flatter the mass distributions, and the pressure distributions show similar behaviour. For ã = 1 and b̃ = 2 we have p̃R/σ̃ < 0.2
and p̃z/σ̃ < 0.15, and for ã = 1 and b̃ = 1 the ratios are p̃R/σ̃ < 0.4 and p̃z/σ̃ < 0.3. Thus, for these parameters all energy conditions are
satisfied.

The tangential circular velocity equation (11) and specific angular momentum equation (12) for f given by equation (15) evaluated on
z = 0 read(

vc

c

)2

= 2R̃2
√

R̃2 + η2( − 1 +
√

R̃2 + η2
)[ − R̃2 + η2 + (R̃2 + η2)3/2

] , (19)

h̄ =
√

2R̃2
(

1 +
√

R̃2 + η2
)2

(R̃2 + η2)3/4

√
(R̃2 + η2)2 + R̃2 − η2 − 4R̃2

√
R̃2 + η2

, (20)

where we have defined h = crsh̄ and η = ã + b̃. The first-order expansion of equation (19) reads

vc

c
= R̃

√
2[

R̃2 + (ã + b̃)2
]3/4

{
1 + R̃2[

R̃2 + (ã + b̃)2
]3/2

}
. (21)

2 Note that the Schwarzschild radius rs in isotropic spherical coordinates is related to Schwarzschild radius r ′
s in canonical spherical coordinates by r s = r ′

s/4.
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Figure 2. Surface plot and level curves of the radial pressure p̄R equation (16a) and vertical pressure p̄z equation (17) with parameters ã = 1 and b̃ = 2.
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Figure 3. Surface plot and level curves of the energy density σ̄ equation (16a) and ‘effective Newtonian density’ ρ̄ equation (17) with parameters ã = 1 and
b̃ = 1.

Figs 5(a) and (b) show, respectively, the rotation profile equation (19) and the curves of specific angular momentum equation (20) for
parameters ã = 1 and b̃ = 2, b̃ = 1 and b̃ = 0.5. In Fig. 5(a) the dashed curves represent the Newtonian tangential velocities. Relativistic
tangential velocities are always higher than the Newtonian ones, as suggested by the first-order correction in equation (21). The curves of
specific angular momentum show that circular orbits on the plane z̃ = 0 turn out to be unstable for higher flattened matter distributions (the
curve for b̃ = 0.5). The orbits for the parameters ã = 1 and b̃ = 2 are all stable, whereas in the case of b̃ = 1 a small region of instability
appears between R̃ ≈ 5 and R̃ ≈ 6. The Newtonian limit of equation (20) gives

h̄ =
√

2R̃2

[R̃2 + (ã + b̃)2]3/4
, (22)

from which it is easily checked that (dh̄/dR̃) � 0 for all ã, b̃ and R̃. Thus, the instability is a pure relativistic effect (the same is verified for
circular orbits around the superposition of black holes and axially symmetric structures in Weyl coordinates; see Letelier 2003).

3.2 Second model

Another pair of potential and density functions presented by Miyamoto and Nagai as a generalization of the Toomre model 2 is described by

�(R, z) = − G M√
R2 + (a + ζ )2

[
1 + a(a + ζ )

R2 + (a + ζ )2

]
, (23a)
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Figure 4. Surface plot and level curves of the radial pressure p̄R equation (16b) and vertical pressure p̄z equation (16c) with parameters ã = 1 and b̃ = 1.

ρN (R, z) = 3b2 M

4πζ 3[R2 + (a + ζ )2]7/2
[R2(a3 + ζ 3) + (ζ + a)3(ζ 2 + 4aζ + a2)], (23b)

where ζ = √
z2 + b2. Using f defined by equation (6) in equations (4a)–(4e), we find that the components T R

z = T z
R are non-zero. The physical

variables of the matter distribution are obtained by solving the eigenvalue problem for T a
b

T a
b �b = λ�a . (24)

We find that Tab can be put in the form

T ab = σea
(0)e

b
(0) + p+ea

(1)e
b
(1) + p−ea

(2)e
b
(2) + pϕea

(3)e
b
(3), (25)

where

σ = T t
t

c2
, ea

(0) =
(

1 + f

1 − f
, 0, 0, 0

)
,

p± = − T R
R + T z

z

2
∓ 1

2

√
(T R

R − T z
z )2 + 4(T R

z )2,
(26)

ea
(1) = (0, eR

(1), ez
(1), 0), ea

(2) = (0, eR
(2), ez

(2), 0),

pϕ = −T ϕ
ϕ , ea

(3) =
(

0, 0, 0,
1

R(1 + f )2

)
,

(27)

and

eR
(1) = − T R

z

(1 + f )2

√(
T R

z

)2 + (
T R

R + p+
)2

, ez
(1) = T R

R + p+

(1 + f )2

√(
T R

z

)2 + (
T R

R + p+
)2

,

eR
(2) = − T R

z

(1 + f )2

√(
T R

z

)2 + (
T R

R + p−
)2

, ez
(2) = T R

R + p−

(1 + f )2

√(
T R

z

)2 + (
T R

R + p−
)2

.

(28)

The effective Newtonian density reads ρ = σ + p+/c2 + p−/c2 + pϕ/c2 = σ − T R
R /c2 − T z

z /c2 + pϕ/c2. The explicit expressions for σ̄ , ρ̄

and p̄ϕ are

σ̄ = 3b̃2χ 4
[

R̃2(ã3 + ξ 3) + (ã + ξ )3(ã2 + ξ 2 + 4ãξ )
]

4πξ 3
[
χ 3/2 + R̃2 + (ã + ξ )(2ã + ξ )

]5 , (29)

ρ̄ = 3b̃2χ 11/2
[

R̃2(ã3 + ξ 3) + (ã + ξ )3(ã2 + ξ 2 + 4ãξ )
]

4πξ 3
[
χ 3/2 + R̃2 + (ã + ξ )(2ã + ξ )

]5 [
χ 3/2 − R̃2 − (ã + ξ )(2ã + ξ )

] , (30)
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Figure 5. (a) Relativistic rotation profile equation (19) and Newtonian rotation profile (dashed curves) with parameters ã = 1, b̃ = 2, b̃ = 1 and b̃ = 0.5. (b)
Specific angular momentum equation (20) for the same parameters.

p̄ϕ = χ 4

8πξ 3
[
χ 3/2 + R̃2 + (ã + ξ )(2ã + ξ )

]5 [
χ 3/2 − R̃2 − (ã + ξ )(2ã + ξ )

] {
R̃4

[
ξ 3(ã2 + 2b̃2) + 3ã3b̃2

] + R̃2(ã + ξ )2

× [
9ã3b̃2 + 12ãb̃2ξ 2 + 4b̃2ξ 3 + 2ã2(7b̃2 + z̃2)ξ

] + (a + ξ )4
[
6ã3b̃2 + 12ãb̃2ξ 2 + 2b̃2ξ 3 + ã2(19b̃2 + z̃2)ξ

]}
, (31)

where ξ =
√

z̃2 + b̃2, χ = R̃2 + (ã + ξ )2 and the dimensionless variables were previously defined. The components T R
R , T R

z and T z
z read

T R
R = − Mc2

r 3
s

χ 4

8πξ 3
[
χ 3/2 + r̃ 2 + (ã + ξ )(2ã + ξ )

]5 [
χ 3/2 − r̃ 2 − (ã + ξ )(2ã + ξ )

] {
r̃ 4

[
ξ 3(ã2 + 2b̃2) + 3ã3b̃2

] + r̃ 2(ã + ξ )2

× [
9ã3b̃2 + 12ãb̃2ξ 2 + 4b̃2ξ 3 + 2ã2(b̃2 − 5z̃2)ξ

] + (ã + ξ )4
[
6ã3b̃2 + 12ãb̃2ξ 2 + 2b̃2ξ 3 + ã2(19b̃2 + z̃2)ξ

]}
,

(32)

T R
z = T z

R = − Mc2

r 3
s

3ã2r̃ z̃(ã + ξ )χ 4
[
r̃ 2 − (a + ξ )2

]
4πξ

[
χ3/2 + r̃ 2 + (ã + ξ )(2ã + ξ )

]5 [
χ3/2 − r̃ 2 − (ã + ξ )(2ã + ξ )

] , (33)

T z
z = Mc2

r 3
s

χ4

4πξ 2
[
χ 3/2 + r̃ 2 + (ã + ξ )(2ã + ξ )

]5 [
χ3/2 − r̃ 2 − (ã + ξ )(2ã + ξ )

]
×{

r̃ 4ξ 2(ã2 − b̃2) − 2r̃ 2ξ (ã + ξ )2
[
3ãb̃2 + ξ (2ã2 + b̃2)

] + (ã + ξ )4
[
ã2(z̃2 − 8b̃2) − b̃2ξ (6ã + ξ )

]}
, (34)

and p± is further adimensionalized as p± = (Mc2/r 3
s ) p̄±.

The condition (ã + b̃)2 > (2ã + b̃) ensures positive densities and non-singular behaviour for the densities and pressures. The first-order
expansion of equation (30) reads

ρ̄ ≈ 3b̃2
[

R̃2(ã3 + ξ 3) + (ã + ξ )3(ã2 + ξ 2 + 4ãξ )
]

4πξ 3[R̃2 + (ã + ξ )2]7/2

{
1 − 4[R̃2 + (ã + ξ )(2ã + ξ )]

[R̃2 + (ã + ξ )2]3/2

}
. (35)
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Figure 6. Surface plot and level curves of the energy density σ̄ equation (29) and ‘effective Newtonian density’ ρ̄ equation (30) with parameters ã = 1 and
b̃ = 2.
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Figure 7. Surface plot and level curves of the pressures p̄± equation (26) with parameters ã = 1 and b̃ = 2.

The surfaces and level curves of the densities equations (29) and (30) and pressures equation (26) are shown in Figs 6 and 7, respectively,
for parameters ã = 1 and b̃ = 2. Fig. 8(a) displays the surface and level curves for the azimuthal pressure. For these parameters we have
p̃ϕ/σ̃ < 0.3, p̃+/σ̃ < 0.25 and p̃−/σ̃ < 0.3.

The tangential circular velocity equation (11) and specific angular momentum equation (12) are given by(
vc

c

)2

= 2R̃2χ3/2
[

R̃2 + η(4ã + b̃)
][

χ 3/2 − R̃2 − η(2ã + b̃)
] [

χ 5/2 − R̃4 − 5ãη R̃2 + η3(2ã + b̃)
] , (36)

h̄ =
√

2R̃2
[
χ 3/2 + R̃2 + η(2ã + b̃)

]2 √
R̃2 + η(4ã + b̃)

χ9/4

{
χ 4 + [

R̃2 + η(2ã + b̃)
] [

R̃4 + 5ãη R̃2 − η3(2ã + b̃)
]

− 4R̃2χ 3/2
[

R̃2 + η(4ã + b̃)
]}−1/2

,

(37)

where h = crsh̄, η = ã + b̃ and χ = R̃2 + η2. The first-order expansion of equation (36) reads

vc

c
=

√
2R̃

[
R̃2 + (ã + b̃)(4ã + b̃)

]1/2[
R̃2 + (ã + b̃)2

]5/4

{
1 + R̃2

[
R̃2 + (ã + b̃)(4ã + b̃)

]
[

R̃2 + (ã + b̃)2
]5/2

}
. (38)

In Figs 9(a) and (b) we display the rotation profiles and curves of specific angular momentum for parameters ã = 1, b̃ = 3 and b̃ = 2. As in
the previous case, relativistic effects increase the tangential velocity. We also note that the orbits for b̃ = 3 and b̃ = 2 are all stable.
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Figure 8. Surface plot and level curves of the azimuthal pressure p̄ϕ equation (31) with parameters ã = 1 and b̃ = 2.
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Figure 9. (a) Relativistic rotation profile equation (36) and Newtonian rotation profile (dashed curves) with parameters ã = 1, b̃ = 3 and b̃ = 2. (b) Specific
angular momentum equation (37) for the same parameters.

4 A G E N E R A L R E L AT I V I S T I C S ATO H M O D E L

Satoh (1980) derived other pairs of three-dimensional potential and density functions by inflating the Plummer models of order n. In the limit
when n → ∞ the pair takes the simple form

�(R, z) = − Gm√
R2 + z2 + a(a + 2

√
z2 + b2)

, (39a)

ρN (R, z) = ab2 M

4π

[
R2 + z2 + (a + 2

√
z2 + b2)(a + 3

√
z2 + b2)

]
(z2 + b2)3/2

[
R2 + z2 + a(a + 2

√
z2 + b2)

]5/2 . (39b)
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Using the function f (R, z) with � given by equation (39a), we obtain the following expressions for the non-zero components of the
energy-momentum tensor equations (4a)–(4e)

σ̄ = ãb̃2
[

R̃2 + z̃2 + (ã + 2ξ )(ã + 3ξ )
]

8πξ 3
[

1 +
√

R̃2 + z̃2 + ã(ã + 2ξ )
]5 , (40a)

p̄R = p̄ϕ = ãb̃2
[

R̃2 + z̃2 + (ã + 2ξ )2
]

8πξ 3
[

1 +
√

R̃2 + z̃2 + ã(ã + 2ξ )
]5 [

−1 +
√

R̃2 + z̃2 + ã(ã + 2ξ )
] , (40b)

p̄z = ãb̃2(ã + 2ξ )

4πξ 2
[

1 +
√

R̃2 + z̃2 + ã(ã + 2ξ )
]5 [

−1 +
√

R̃2 + z̃2 + ã(ã + 2ξ )
] , (40c)

ρ̄ = ãb̃2
√

R̃2 + z̃2 + ã(ã + 2ξ )
[

R̃2 + z̃2 + (ã + 2ξ )(ã + 3ξ )
]

4πξ 3
[

1 +
√

R̃2 + z̃2 + ã(ã + 2ξ )
]5 [

−1 +
√

R̃2 + z̃2 + ã(ã + 2ξ )
] , (40d)

where ξ =
√

z̃2 + b̃2 and the dimensionless variables were previously defined. As f has the form of equation (7), the energy-momentum
tensor is diagonal and the radial and azimuthal stresses are equal. We have σ̄ > 0 and ρ̄ > 0 everywhere and pressures without singularities
provided ã(ã + 2b̃) > 1. In the weak field limit, equation (40d) may be expanded as

ρ̄ ≈ ãb̃2

4π

[
R̃2 + z̃2 + (ã + 2ξ )(ã + 3ξ )

]
ξ 3

[
R̃2 + z̃2 + ã(ã + 2ξ )

]5/2

[
1 − 4√

R̃2 + z̃2 + ã(ã + 2ξ )

]
, (41)

which introduces again a negative first-order relativistic correction to the Newtonian mass density.
Expressions for the tangential velocity and angular momentum follow directly from equations (11) and (12)(

vc

c

)2

= 2R̃2
√

R̃2 + η[−R̃2 + η + (R̃2 + η)3/2
](

−1 +
√

R̃2 + η

) , (42)

h̄ =
√

2R̃2(1 +
√

R̃2 + η)2

(R̃2 + η)3/4

√
(R̃2 + η)2 + R̃2 − η − 4R̃2

√
R̃2 + η

, (43)

where h = crsh̄ and η = ã(ã + 2b̃). The first-order expansion of equation (42) is given by

vc

c
= R̃

√
2[

R̃2 + ã(ã + 2b̃)
]3/4

{
1 + R̃2[

R̃2 + ã(ã + 2b̃)
]3/2

}
. (44)

The surfaces and level curves of the densities and pressures equations (40a)–(40d) for parameters ã = 1 and b̃ = 2 are plotted in
Figs 10 and 11. We have p̄R/σ̄ < 0.6 and p̄z/σ̄ < 0.5, so all energy conditions are satisfied. Rotation profiles and curves of specific angular
momentum are displayed in Fig. 12 for parameters ã = 1, b̃ = 2 and b̃ = 1. We note that circular orbits are stable for b̃ = 2.

5 G E O D E S I C O R B I T S

An interesting application of the general relativistic galactic models is the study of geodesic orbits outside the galactic plane. As an example
we calculate numerically two orbits for the first Miyamoto–Nagai model (Section 3.1) and compare them with the Newtonian case.

We solve numerically the geodesic equations of motion

ẍµ + 
µ
αβ ẋα ẋβ = 0, (45)

for metric equation (2), where 
µ
αβ are the Christoffel symbols and the dot denote differentiation with respect to the proper time. With the

orthonormal tetrad defined as

ei
(t) = 1+ f

1− f (1, 0, 0, 0), ei
(R) = 1

(1+ f )2 (0, 1, 0, 0),

ei
(z) = 1

(1+ f )2 (0, 0, 1, 0), ei
(ϕ) = 1

R(1+ f )2 (0, 0, 0, 1),
(46)

the tetrad components of the four-velocity vi read

vi = γ (1, v sin ψ cos θ, v sin ψ sin θ, v cos ψ), (47)

with γ = 1/
√

1 − v2 (we have set c = 1). The specific energy and angular momentum of the test particle are

E = γ
1 − f

1 + f
, (48)
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Figure 10. Surface plot and level curves of the energy density σ̄ equation (40a) and ‘effective Newtonian density’ ρ̄ equation (40d) with parameters ã = 1
and b̃ = 2.
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Figure 11. Surface plot and level curves of the radial pressure p̄R equation (40b) and vertical pressure p̄z equation (40c) with parameters ã = 1 and b̃ = 2.

h = r (1 + f )2γ v cos ψ. (49)

As initial conditions, we take a position at radius R0 on the disc’s plane and components of the four-velocity vi
0 = γ (1, 0, v0 sin ψ , v0 cos ψ),

where v0 is equal to the tangential velocity of circular orbits at radius R0. Similar initial conditions for the Newtonian case are chosen with
the same angular momentum and energy E − 1. Both the geodesic and Newtonian equations are solved with the fourth–fifth Runge–Kutta
method with adaptive size step.

In Figs 13–16 we compare both orbits for the first Miyamoto–Nagai model with parameters ã = 1 and b̃ = 1. For the orbits shown in
Figs 13 and 14 large radii have been chosen as initial conditions. As expected, general relativistic effects are small. A noticeable difference is
seen in a periodic variation of the amplitude of the R̃ coordinate as a function of the azimuthal angle in the relativistic case. On the other hand,
the orbits shown in Figs 15 and 16 have been computed near the centre where the gravitational fields are strong, and the deviation between
relativistic and Newtonian orbits are much more pronounced.

6 F I R S T- O R D E R E F F E C T S O F G A L AC T I C ROTAT I O N O N T H E ROTAT I O N P RO F I L E S

The galactic models presented in the previous sections are all static. Astrophysical objects are expected to have angular momentum; thus,
more realistic models should incorporate rotation. An exact stationary general relativistic galactic model could be constructed, for example,
if one managed to find a closed form of the Kerr metric in terms of elementary functions in stationary isotropic coordinates, and then repeated
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Figure 12. (a) Relativistic rotation profile equation (42) and Newtonian rotation profile (dashed curves) with parameters ã = 1, b̃ = 2 and b̃ = 1. (b) Specific
angular momentum equation (43) for the same parameters.

the procedure outlined in the previous sections to calculate the matter properties. Although this cannot be done for the exact Kerr solution,
the same is not true for the first-order expansion of the Kerr metric with respect to the rotation parameter. It reads

ds2 =
(

1 − 2G M

rc2

)
c2dt2 − dr 2

1 − (2G M/rc2)
− r 2(dθ2 + sin2 θdϕ2) + 4G Mα

rc
sin2 θdtdϕ, (50)

where α is the rotation parameter. If we transform metric equation (50) to cylindrical isotropic coordinates (t , R, z, ϕ) and express it in terms
of the function f given by equation (3) we obtain

ds2 =
(

1 − f

1 + f

)2

c2dt2 − (1 + f )4
(

dR2 + dz2 + R2dϕ2
) + 32αR2 f 3c5

G2 M2(1 + f )2
dtdϕ. (51)

Now the function f may be replaced by any of the forms presented in the previous sections to generate space–times with matter. However, a
direct calculation using the Einstein field equations and metric equation (51) shows that the influence of rotation on the physical variables of
the matter is of at least O(α2). Thus, to have a consistent correction one should also start with metric form equation (51) corrected at least to
O(α2); however, it does not seem possible to express this particular form of the metric with second-order corrections of the rotation parameter.
Despite this, a consistent first-order correction of the rotation profiles can be calculated.

We rewrite equation (51) as

dτ 2 = gtt dt2 − gR R

(
dR2 + dz2 + R2dϕ2

) + 2gtϕdtdϕ, (52)

where for convenience we have set c = 1. Let va = (ṫ, 0, 0, ϕ̇) be the velocity four-vector, where dots denote differentiation with respect to
τ . The geodesic equation for circular orbits is

gtt,R ṫ2 + 2gtϕ,R ṫ ϕ̇ − (R2gR R),R ϕ̇2 = 0 ⇒ ϕ̇

ṫ
= gtϕ,R ±

√
(gtϕ,R)2 + gtt,R(R2gR R),R

(R2gR R),R
. (53)
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Figure 13. (a) Geodesic orbits for the first Miyamoto–Nagai model with parameters ã = 1, b̃ = 1. Initial conditions: R̃0 = 15, ψ = 45◦ with energy
E ≈ 0.901 and angular momentum h̄ ≈ 5.03. (b) Newtonian orbit with energy E − 1 and same angular momentum. Initial conditions: R̃0 ≈ 19.84 and
ψ ≈ 36.◦37.
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Figure 14. The coordinates R̃ and z̃ as functions of the number of revolutions ϕ/2π for the orbits shown in Fig. 13. (a) Geodesic and (b) Newtonian orbit.

Thus, the prograde and retrograde angular velocities are, in general, different. We define an orthonormal tetrad e(b)i as

e(t)i =
(√

g2
tϕ + R2gtt gR R

R
√

gR R
, 0, 0, 0

)
,

e(R)i = (0, −√
gR R, 0, 0), e(z)i = (0, 0, −√

gR R, 0),

e(ϕ)i =
(

gtϕ

R
√

gR R
, 0, 0, −R

√
gR R

)
,

(54)

and project the components of va on the tetrad: v(a) = e(a)
i vi = η(a)(b)e(b)iv

i

v(t) =
√

g2
tϕ + R2gtt gR R

R
√

gR R
ṫ, (55a)

v(ϕ) = − gtϕ

R
√

gR R
ṫ + R

√
gR R ϕ̇. (55b)
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Figure 15. (a) Geodesic orbits for the first Miyamoto–Nagai model with parameters ã = 1, b̃ = 1. Initial conditions: R̃0 = 1, ψ = 45◦ with energy E ≈ 0.196
and angular momentum h̄ ≈ 0.867. (b) Newtonian orbit with energy E − 1 and same angular momentum. Initial conditions: R̃0 ≈ 1.88 and ψ ≈ 38.◦01.
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Figure 16. The coordinates R̃ and z̃ as functions of the number of revolutions ϕ/2π for the orbits shown in Fig. 15. (a) Geodesic and (b) Newtonian orbit.

Using equation (53) in equations (55a) and (55b) we obtain

v(ϕ)

v(t)
= 1√

g2
tϕ + R2gtt gR R

[
−gtϕ + R2gR R

(R2gR R),R

(
gtϕ,R ±

√
(gtϕ,R)2 + gtt,R(R2gR R),R

)]
. (56)

The terms g2
tϕ and (gtϕ,R)2 in equation (56) are ofO(α2) and thus can be neglected. Using metric equation (51), equation (56) can be rearranged

as

vc = c

√
−2R f,R

(1 − f )(1 + f + 2R f,R)

[
±1 + 24α f 2 Rc4

G2 M2(1 + f )3

√
−R f,R(1 − f )

2(1 + f + 2R f,R)

]
, (57)

where c has been reintroduced. The term outside the brackets is the tangential velocity equation (11). The term with α is always positive, and
thus the first-order effect of rotation increases (decreases) the prograde (retrograde) tangential velocity.

Equation (57), calculated with the functions f used in Sections 3 and 4, results in

vc

c
=

√
2R̃(R̃2 + ξ )1/4

[−1 + (R̃2 + ξ )1/2]1/2[−R̃2 + ξ + (R̃2 + ξ )3/2]1/2


±1 + 3α̃ R̃2(R̃2 + ξ )1/4

[1 + (R̃2 + ξ )1/2]3

√
2[−1 + (R̃2 + ξ )1/2]

−R̃2 + ξ + (R̃2 + ξ )3/2


 , (58)
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Figure 17. Prograde (upper) curves and retrogade (lower) curves of tangential velocity equation (58) for the first Miyamoto–Nagai model with parameters (a)
ã = 1, b̃ = 2 and (b) ã = 1, b̃ = 1. Rotation parameter: α̃ = 0 (solid line), α̃ = 0.2 and α̃ = 0.4.

vc

c
=

√
2R̃ζ 3/4[R̃2 + (ã + b̃)(4ã + b̃)]1/2[

ζ 3/2 − R̃2 − (ã + b̃)(2ã + b̃)
]1/2 [

ζ 5/2 − R̃4 − 5ã(ã + b̃)R̃2 + (ã + b̃)3(2ã + b̃)
]1/2

×


±1 + 3α̃ R̃2ζ 3/4[R̃2 + (ã + b̃)(2ã + b̃)]2

[ζ 3/2 + R̃2 + (ã + b̃)(2ã + b̃)]3

√
2[R̃2 + (ã + b̃)(4ã + b̃)][ζ 3/2 − R̃2 − (ã + b̃)(2ã + b̃)]

ζ 5/2 − R̃4 − 5ã(ã + b̃)R̃2 + (ã + b̃)3(2ã + b̃)


 . (59)

Here, in equation (58) ξ = (ã + b̃)2 for the first Miyamoto–Nagai model (Section 3.1), ξ = ã(ã + 2b̃) for the Satoh model (Section 4), and in
equation (59) ζ = R̃2 + (ã + b̃)2 for the second Miyamoto–Nagai model (Section 3.2). The dimensionless variables were defined in Section
3.1 and α̃ = α/rs.

In Figs 17(a) and (b) we plot the curves of progade and retrogade tangential velocity for the first Miyamoto–Nagai model with parameters
ã = 1, b̃ = 2 and ã = 1, b̃ = 1 with rotation parameter α̃ = 0, α̃ = 0.2 and α̃ = 0.4. The same curves for the second Miyamoto–Nagai
model and for the Satoh model with parameters ã = 1, b̃ = 2 are shown in Figs 18(a) and (b).

7 D I S C U S S I O N

Using a special form for the metric in cylindrical isotropic coordinates, we have constructed what may be interpreted as the general relativistic
versions of some known Newtonian models for three-dimensional distributions of matter in galaxies, like those formulated by Miyamoto &
Nagai (1975), Nagai & Miyamoto (1976) and Satoh (1980). For the first Miyamoto–Nagai potential and for one Satoh potential we obtained
matter distributions that have similar properties: their energy-momentum tensor is diagonal with isotropy of pressure in the radial and azimuthal
directions; energy density and the ‘effective Newtonian density’ are positive everywhere as well as the stresses (pressures) in the vertical
direction. For particular values of the free parameters, we found that the dominant energy condition is also satisfied. Stability analysis of the
circular geodesic orbits on the galactic plane using an extension of the Rayleigh criteria of stability shows stable orbits for some combination
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Figure 18. Prograde (upper) curves and retrogade (lower) curves of tangential velocity for (a) the second Miyamoto–Nagai model equation (59) with parameters
ã = 1, b̃ = 2 and (b) for the Satoh model equation (58) with parameters ã = 1, b̃ = 2. Rotation parameter: α̃ = 0 (solid line), α̃ = 0.2 and α̃ = 0.4.

of free parameters. The second Miyamoto–Nagai potential function, after diagonalization of the energy-momentum tensor, yields matter
distributions with positive energy density and three different pressures. Also in this case, free parameters can be chosen so that all energy
conditions are satisfied and circular orbits are stable on the galactic plane.

As an example of application of the models, we have numerically calculated some geodesic orbits for one of the potentials and compared
them with the Newtonian orbits with the same energy and angular momentum. Near the central regions where the gravitational fields are
strong, the motion of particles is considerably altered by general relativistic effects.

We also calculated the first-order effects of galactic rotation on the tangential velocity of circular orbits on the galactic plane using
an approximate form of the Kerr metric expressed in cylindrical isotropic coordinates. In general, rotation increases the progade tangential
velocity and has an opposite effect on the retrogade tangential velocity.

It should be mentioned that the stability study of the models presented based on the extension of Rayleigh criteria of stability is very
limited. A more realistic stability analysis should rely on the first-order perturbed general relativistic fluid equations taking into account two
spatial coordinates, which may be not a trivial task (see, for instance, Ujevic & Letelier 2004 for the one-dimensional case). This will be the
subject of further investigation.
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Garcı́a G., González G., 2004, Phys. Rev. D, 69, 124002
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