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ABSTRACT
The advance of perihelion for geodesic motion on the galactic plane of some exact general

relativistic disc solutions is calculated. Approximate analytical and numerical results are pre-

sented for the static Chazy–Curzon and the Schwarzschild discs in Weyl coordinates, the

Schwarzschild disc in isotropic coordinates and the stationary Kerr disc in the Weyl–Lewis–

Papapetrou metrics. It is found that for these disc models the advance of perihelion may be an

increasing or decreasing function of the orbital excentricity. The precession due to Newtonian

gravity for these disc models is also calculated.

Key words: relativity – stellar dynamics – celestial mechanics – galaxies: kinematics and

dynamics.

1 I N T RO D U C T I O N

The explanation of the anomalous precession of Mercury’s orbit by Einstein in 1915 was one of the first successful predictions of general

relativity. In recent times the subject has received considerable attention with the possibility of high-precision measurements of general

relativistic effects in the orbits of binary pulsars like the PSR 1913+16 system discovered in 1974 (Hulse & Taylor 1975). Schäfer & Damour

(1988) discuss in-depth higher order general relativistic contributions to the periastron advance of binary pulsars. Schäfer & Wex (1993)

calculated the periastron advance for a system composed of a Kerr black hole and an orbiting star.

In the context of axially symmetric solutions of Einstein vacuum equations, Boisseau & Letelier (2002) calculated the effect of

different general relativistic multipole expansions in the advance of perihelion of test particles orbiting static axially symmetric attrac-

tion centres. Bini et al. (2005) derived approximate expressions for the periastron shift for motion in static and stationary axially sym-

metric space–times. However, we did not find in the literature similar works for general relativistic solutions with matter, in particular,

disc-like configurations. Several such solutions can be found in the literature, e.g. Morgan & Morgan (1969), Bardeen & Wagoner

(1971), Lynden-Bell & Pineault (1978), Chamorro, Gregory & Stewart (1987), Lemos (1989), Bičák & Ledvinka (1993), Bičák, Lynden-Bell

& Pichon (1993b), Lemos & Letelier (1994), Neugebauer & Meinel (1995), Pichon & Lynden-Bell (1996) and González & Espitia (2003).

The aim of this work is to study the advance of perihelion for motion of test particles in the galactic plane for a few exact solu-

tions of Einstein field equations that represent disc-like configurations of matter (Bičák, Lynden-Bell & Katz 1993a; González & Letelier

2000; Vogt & Letelier 2003; González & Letelier 2004; Vogt & Letelier 2005a,b). We derive approximate expressions and also present numer-

ical results. We find that when matter is present the periastron shift may be an increasing or a decreasing function of the orbital excentricity.

The paper is divided as follows. In Section 2 we present the formalism to calculate the periastron shift for relativistic elliptic orbits of test

particles. This formalism is then applied in Section 3 to two exact models of static relativistic discs in canonical Weyl coordinates and to one

solution expressed in isotropic coordinates. In Section 4 we calculate the periastron shift for a solution of a rotating disc obtained from the

Kerr metric. In Section 5 we calculate the contribution of Newtonian gravity to the precession in the presented disc models so that it can be

separated from relativistic effects. Finally, in Section 6 we present a short discussion of the results. Along the work we take units such that

c = G = 1.

2 A DVA N C E O F T H E P E R I H E L I O N I N R E L AT I V I S T I C O R B I T S

In this section we derive the formulae to calculate the advance of perihelion for geodesic elliptic-like orbits in an axial symmetric space–time

with cylindrical coordinates (t, r, z, ϕ). We follow closely Bini et al. (2005). Let us assume a test particle is bound in an elliptic orbit on the

plane z = 0. This orbit can be parametrized as

r = d(1 − e2)

1 + e cos χ
, (1)
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Relativistic discs and advance of perihelion 835

where d and e are, respectively, the ellipse’s semimajor axis and excentricity, and χ is a variable called relativistic anomaly. From equation (1)

we see that the minimum value rm = d(1 − e) is obtained for χ = 0 and the maximum value rp = d(1 + e) when χ = π. At these points the

equation dr/dϕ that describes the shape of the orbit vanishes. The relation between the functions ϕ e χ can be expressed as

dϕ

dχ
= ed(1 − e2) sin χ

(1 + e cos χ )2

dϕ

dr

∣∣∣∣
r=r (χ )

, (2)

where equation (1) was used. By symmetry, the change in the coordinate ϕ when χ decreases from π to 0 is the same that when χ increases

from 0 to π; thus the total change in the coordinate ϕ in one revolution is 2[ϕ(π) − ϕ(0)], where

ϕ(π) − ϕ(0) =
∫ π

0

ed(1 − e2) sin χ

(1 + e cos χ )2

dϕ

dr

∣∣∣∣
r=r (χ )

dχ. (3)

In a closed ellipse ϕ would change by 2π per revolution, so the orbit precesses by an angle

�ϕ = 2[ϕ(π) − ϕ(0)] − 2π (4)

in one revolution. In general it is not possible to express the integral equation (3) in terms of elementary functions; we will evaluate it

numerically and also derive approximate expressions.

3 A DVA N C E O F T H E P E R I H E L I O N A N D S TAT I C R E L AT I V I S T I C D I S C S

We study first the precession of perihelion for orbits in static relativistic disc models in Weyl coordinates and isotropic coordinates.

3.1 Weyl coordinates

The general metric for a static axially symmetric space–time in Weyl’s canonical coordinates (t, r, z, ϕ) is given by

ds2 = −e2�dt2 + e−2�[e2�(dr 2 + dz2) + r 2dϕ2], (5)

where � and � are functions of r and z. The Einstein vacuum equations for this metric reduce to the Weyl equations (Weyl 1917, 1919)

�,rr + �r

r
+ �,zz = 0, (6)

�r = r
(
�2

r − �2
z

)
, �z = 2r�r�z . (7)

We shall consider two solutions of equations (6) and (7): the Chazy–Curzon solution (Chazy 1924; Curzon 1924)

e2� = e−2m/R, e2� = e−m2r2/R4
, (8)

where R = √
r 2 + z2, and the Schwarzschild solution, expressed as (Weyl 1917)

� = 1

2
ln

[
R1 + R2 − 2m

R1 + R2 + 2m

]
, � = 1

2
ln

[
(R1 + R2)2 − 4m2

4R1 R2

]
, (9)

with R2
1 = r2 + (m + z)2, R2

2 = r2 + (− m + z)2.

Let us briefly recall a procedure to generate disc-like distributions of matter given a vacuum solution of Einstein field equations.

Mathematically, it consists in applying a transformation z → h(z) + a on a given vacuum solution and then calculate the resulting energy–

momentum tensor using Einstein’s field equations. Thin discs can be obtained if we choose h = |z|. For instance, Bičák et al. (1993a)

constructed thin discs using the Curzon solution equation (8) and the Schwarzschild solution equation (9). On the other hand, thick discs can

be constructed starting with the same vacuum solutions and using a class of even polynomials for h(z); see González & Letelier (2004) and

Vogt & Letelier (2005a) for details. Also, a transformation originally proposed by Miyamoto & Nagai (1975) with h(z) = √
z2 + b2 was

used by Vogt & Letelier (2005b) to generate relativistic disc-like distributions of matter from the Schwarzschild vacuum solution in isotropic

coordinates. For our analysis, the advance of perihelion is always calculated on the galactic plane z = 0, where all the above mentioned

transformations reduce to a constant. Thus, the results apply equally to thin and to thick discs. Henceforth this constant will be denoted a.

For time-like orbits on the z = 0 plane, the Lagrangian associated to metric equation (5) reads

2L = −1 = −e2� ṫ2 + e2(�−�)ṙ 2 + r 2e−2�ϕ̇2, (10)

where dots indicate differentiation with respect to proper time. Due to the independence of L from t e ϕ, the conserved energy E and angular

momentum h per unit mass can be introduced:

E = e2� ṫ, h = r 2e−2�ϕ̇. (11)

Using equation (11), the expression for the shape of the orbit follows from equation (10):

dr

dϕ
= r

e�

[
r 2e−2�(E2e−2� − 1)

h2
− 1

]1/2

. (12)
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836 D. Vogt and P. S. Letelier

For an elliptic orbit with excentricity e and semimajor axis d, the two constants of motion can be calculated by substituting rm = d(1 − e)

and rp = d(1 + e) in dr/dϕ = 0 and solving the system. We have

E2 = r 2
p e−2�p − r 2

me−2�m

r 2
p e−4�p − r 2

me−4�m
, h2 = r 2

p r 2
me−2(�p+�m)

(
e−2�m − e−2�p

)
r 2

p e−4�p − r 2
me−4�m

, (13)

where �m = �(rm) and �p = �(rp).

To estimate the advance of perihelion for orbits in the z = 0 plane for both disc models, it is reasonable to suppose that m/d and a/d are

small quantities and expand equation (3) with equations (12)–(13) in multivariate Taylor series. For the Curzon disc, the expansion up to third

order reads

�ϕ = 6πm

d(1 − e2)
− 3πa2

d2(1 − e2)2
+ πm2(44 − 9e2)

2d2(1 − e2)2
− 6πma2(6 + e2)

d3(1 − e2)3
+ πm3(192 − 53e2)

2d3(1 − e2)3
, (14)

while for the Schwarzschild disc we obtain

�ϕ = 6πm

d(1 − e2)
− 3πa2

d2(1 − e2)2
+ 3πm2(14 − 3e2)

2d2(1 − e2)2
− 6πma2(6 + e2)

d3(1 − e2)3
+ 3πm3(56 − 19e2)

2d3(1 − e2)3
. (15)

Both expansions with a = 0 agree with those presented by Bini et al. (2005) up to second order. In equations (14) and (15) the terms

corresponding to the vacuum solutions are all positive, whereas the ones related to the presence of matter (parameter a) have negative signs.

When matter is absent, the angle of advance is an increasing function with respect to excentricity, but expansions (14) and (15) suggest that

this may not be true in the present disc models. By imposing ∂(�ϕ)/∂e = 0 in equations (14) and (15), the following expressions for the

parameter a are obtained, respectively,

a2 = m[12d2(1 − e2)2 + md(1 − e2)(79 − 9e2) + m2(523 − 106e2)]

12[d(1 − e2) + m(19 + 2e2)]
, (16)

a2 = m[4d2(1 − e2)2 + md(1 − e2)(25 − 3e2) + m2(149 − 38e2)]

4[d(1 − e2) + m(19 + 2e2)]
. (17)

These expressions, evaluated for e = 0 and 1, yield the results

a2 = m(12d2 + 79md + 523m2)

12(d + 19m)
, a2 = 139m2

84
(Curzon), (18)

a2 = m(4d2 + 25md + 149m2)

4(d + 19m)
, a2 = 37m2

28
(Schwarzschild). (19)

Equations (18) and (19) give an estimate for the ranges in the parameter a for which the angle of advance as a function of excentricity has a

critical point.

Figs 1(a)–(c) show the angle of precession as function of excentricity for the Chazy–Curzon disc with parameters m/d = 0.01, a/d =
0.05 in Fig. 1(a), a/d = 0.075 in (b) and a/d = 0.1 in (c). The curves with solid lines were calculated by numerical integration of equation (3),

those with dashed lines represent expansion equation (14) with terms up to second order, and the dotted lines the same expression but with

terms of third order. Figs 2(a)–(c) show the results for the Schwarzschild disc with the same value of parameters. In both cases the numerical

results and the expansion up to third order agree well for small values of e. Using the estimates given by equations (18) and (19), the intervals

with critical points would be 0.0128 � a/d � 0.0948 and 0.0115 � a/d � 0.0946, respectively.

3.2 Isotropic coordinates

The line element in isotropic form in cylindrical coordinates (t, r, z, ϕ) may be expressed as

ds2 = −e2�dt2 + e2�(dr 2 + dz2 + r 2dϕ2), (20)

where the � and � are only functions of r and z. The vacuum Schwarzschild solution for metric equation (20) has the form

e2� =
[

1 − m/(2R)

1 + m/(2R)

]2

, e2� =
(

1 + m

2R

)4

, (21)

where R = √
r 2 + z2. Also here disc-like distributions of matter can be generated by applying convenient transformations on the z coordinate

(see e.g. Vogt & Letelier 2003; González & Letelier 2004; Vogt & Letelier 2005a,b), as was discussed in Section 3.1.

For metric equation (20), the shape of the orbit of a test particle confined on the z = 0 plane is described by

dr

dϕ
= r

[
r 2e2�(E2e−2� − 1)

h2
− 1

]1/2

. (22)

The constants of motion E and h are now given by the following expressions:

E2 = r 2
p e2�p − r 2

me2�m

r 2
p e2(�p−�p) − r 2

me2(�m−�m)
, h2 = r 2

p r 2
me2(�p+�m)(e−2�m − e−2�p )

r 2
p e2(�p−�p) − r 2

me2(�m−�m)
, (23)

with the same notation as defined in Section 3.1.
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Relativistic discs and advance of perihelion 837
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Figure 1. The advance of the perihelion �ϕ as function of excentricity e for the Chazy–Curzon disc. Parameters: m/d = 0.01, a/d = 0.05 in (a), a/d = 0.075

in (b) and a/d = 0.1 in (c). Solid lines: numerical integration of equation (3). Dashed lines: values obtained from equation (14) up to terms of second order.

Dotted lines: the same expansion with terms of third order.
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Figure 2. The perihelion shift �ϕ as function of excentricity e for the Schwarzschild disc. Parameters: m/d = 0.01, a/d = 0.05 in (a), a/d = 0.075 in (b) and

a/d = 0.1 in (c). Solid lines: numerical integration of equation (3). Dashed lines: values obtained from equation (15) up to terms of second order. Dotted lines:

the same expansion with terms of third order.

For the Schwarzschild disc in isotropic coordinates, an approximate expression for the precession of perihelion reads

�ϕ = 6πm

d(1 − e2)
− 3πa2

d2(1 − e2)2
+ 3πm2(14 − 3e2)

2d2(1 − e2)2
− 6πma2(6 + e2)

d3(1 − e2)3
+ 3πm3(57 − 16e2)

2d3(1 − e2)3
. (24)

Comparing equations (15) and (24) reveals that they are almost identical, the difference beginning only in the last term. The calculation of

∂(�ϕ)/∂e = 0 provides
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Figure 3. The advance of the perihelion �ϕ as function of excentricity e for the Schwarzschild disc in isotropic coordinates. Parameters: m/d = 0.01, a/d =
0.05 in (a), a/d = 0.075 in (b) and a/d = 0.1 in (c). Solid lines: numerical integration of equation (3). Dashed lines: values obtained from equation (24) up to

terms of second order. Dotted lines: the same expansion with terms of third order.

a2 = m[4d2(1 − e2)2 + md(1 − e2)(25 − 3e2) + m2(155 − 32e2)]

4[d(1 − e2) + m(19 + 2e2)]
, (25)

which evaluated on e = 0 and 1 gives, respectively,

a2 = m(4d2 + 25md + 155m2)

4(d + 19m)
, a2 = 41m2

28
. (26)

Figs 3(a)–(c) display some curves of the angle �ϕ as function of the excentricity e for the Schwarzschild disc in isotropic coordinates

with parameters m/d = 0.01, a/d = 0.05 in Fig. 3(a), a/d = 0.075 in Fig. 3(b) and a/d = 0.1 in Fig. 3(c). The curves with solid lines were

calculated by numerical integration of equation (3), those with dashed lines represent expansion equation (24) with terms up to second order,

and the dotted lines the same expression but with terms of third order. For this example, equation (26) estimate an interval 0.0121 � a/d �
0.0947. Finally in Figs 4(a)–(c) the three disc models are compared. The parameters taken were m/d = 0.15 and a/d = 0.175 in Fig. 4(a),

a/d = 0.225 in Fig. 4(b) and a/d = 0.275 in Fig. 4(c). All curves were obtained by numerical integration of equation (3). Solid lines represent

the results for the Chazy–Curzon disc, dashed lines for the Schwarzschild disc in Weyl coordinates and dotted lines for the Schwarzschild

disc in isotropic coordinates. Remember that as the parameter a is increased, all the discs become less relativistic (Bičák et al. 1993a; Vogt &

Letelier 2003). This is reflected in the numerical values of the precession angle, which are greater in Fig. 4(a) than in Fig. 4(c). Qualitatively

the curves for the three disc models are similar. As suggested by the expansions equations (15) and (24), both models obtained from the

Schwarzschild solution give quite similar results for low excentric orbits.

4 A DVA N C E O F T H E P E R I H E L I O N A N D S TAT I O NA RY R E L AT I V I S T I C D I S C S

In this section we investigate the effect of rotation on the perihelion shift for stationary relativistic discs, in particular discs generated from

the vacuum Kerr metric. We begin with the metric for a stationary axially symmetric space–time

ds2 = −e2�(dt + Adϕ)2 + e−2�[r 2dϕ2 + e2�(dr 2 + dz2)], (27)

where �, � and A are functions of r and z. The vacuum Kerr solution for metric equation (27) may be written as

� = 1

2
ln

[
(R1 + R2)2 − 4m2 + α2(R1 − R2)2/σ 2

(R1 + R2 + 2m)2 + α2(R1 − R2)2/σ 2

]
, (28)

� = 1

2
ln

[
(R1 + R2)2 − 4m2 + α2(R1 − R2)2/σ 2

4R1 R2

]
, (29)
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Figure 4. The advance of the perihelion �ϕ as function of excentricity e for the three disc models. Parameters: m/d = 0.15, a/d = 0.175 in (a), a/d = 0.225

in (b) and a/d = 0.275 in (c). Solid lines: Chazy–Curzon disc. Dashed lines: Schwarzschild disc in Weyl coordinates. Dotted lines: Schwarzschild disc in

isotropic coordinates.

A = αm

σ 2

(R1 + R2 + 2m)
[
4σ 2 − (R1 − R2)2

]
(R1 + R2)2 − 4m2 + α2(R1 − R2)2/σ 2

, (30)

where m and α are, respectively, the mass and the Kerr parameter, R1 =
√

r 2 + (z + σ )2, R2 =
√

r 2 + (z − σ )2 and σ = √
m2 − α2.

Following the same procedure taken in Section 3, the orbit’s shape of a test particle on the plane z = 0 for metric equation (27) is described by

dr

dϕ
= r

e�

[
r 2e−2�(E2e−2� − 1)

(EA + h)2
− 1

]1/2

. (31)

The conserved energy E and angular momentum h are found by solving the system of equations

r 2
p e−2�p (E2e−2�p − 1) − (EAp + h)2 = 0, (32)

r 2
me−2�m (E2e−2�m − 1) − (EAm + h)2 = 0, (33)

where Ap = A(rp),Am = A(rm), and where again the same notation was used as defined in Section 3.1. For a given excentricity e and

semimajor axis d the system of equations admits two distinct solutions, corresponding to prograde (h > 0) and retrograde (h < 0) orbits. After

applying a convenient transformation on the Kerr solutions (28)–(30) to generate stationary disc-like distributions of matter (see González &

Letelier 2000; Vogt & Letelier 2007), we assume the ratios m/d, a/d and α/d to be small and expand equation (3) in series up to third order1:

�ϕ = 6πm

d(1 − e2)
∓ 8παm1/2

d3/2(1 − e2)3/2
− 3πa2

d2(1 − e2)2
+ 3πm2(14 − 3e2)

2d2(1 − e2)2
+ 3πα2

d2(1 − e2)2
∓ 12παm3/2(5 − e2)

d5/2(1 − e2)5/2

−6πma2(6 + e2)

d3(1 − e2)3
+ 3πm3(56 − 19e2)

2d3(1 − e2)3
+ 6πmα2(12 − e2)

d3(1 − e2)3
, (34)

where the minus (plus) sign refers to prograde (retrograde) orbits. The solution of ∂ (�ϕ)/∂ e = 0 yields

a2 = 1

4[d(1 − e2) + m(19 + 2e2)]
{m[4d2(1 − e2)2 + md(1 − e2)(25 − 3e2) + m2(149 − 38e2) + 4α2(35 − 2e2)]

+ 4αd1/2(1 − e2)1/2[αd1/2(1 − e2)1/2 ∓ 2m1/2d(1 − e2) ∓ m3/2(23 − 3e2)]}, (35)

which for e = 0 and 1 simplifies to

a2 = m(4d2 + 25md + 149m2 + 140α2) + 4αd1/2(αd1/2 ∓ 2m1/2d ∓ 23m3/2)

4(d + 19m)
, (36)

1 There is a discrepancy of a factor of 2 between our result and the second term of equation (34) in Bini et al. (2005). We compared both expressions with the

numerical integration of the exact expressions for vacuum and our result is closer to the numerical values.
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Figure 5. The perihelion shift �ϕ as function of excentricity e for the Kerr disc. Parameters: m/d = 0.01, a/d = 0.075 and α/d = 0.001. Fig. 5(a) displays

results for prograde orbits and (b) for retrograde orbits. Solid lines: numerical integration of equation (3). Dashed lines: values obtained from equation (34) up

to terms of second order. Dotted lines: the same expansion with terms of third order.
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Figure 6. The perihelion shift �ϕ as function of excentricity e for the Kerr disc. Parameters: m/d = 0.15, α/d = 0.05, a/d = 0.175 in (a), a/d = 0.225 in (b)

and a/d = 0.275 in (c). Solid lines: disc without rotation. Dashed lines: prograde orbits. Dotted lines: retrograde orbits.

a2 = 37m2 + 44α2

28
, (37)

respectively.

Figs 5(a)–(b) show the advance of the perihelion as function of excentricity for the Kerr disc with parameters m/d = 0.01, a/d = 0.075

and α/d = 0.001. The curves in Fig. 5(a) are the results for prograde orbits and Fig. 5(b) for retrograde orbits. Curves with solid lines were

calculated by numerical integration of equation (3), those with dashed lines represent expansion equation (34) with terms up to second order,

and the dotted lines the same expression but with terms of third order. For these values we obtain from equation (37) intervals 0.0116 �
a/d � 0.0970 and 0.0116 � a/d � 0.0972 for prograde and retrograde orbits, respectively. The results of numerical integration of the exact

expressions are depicted in Figs 6(a)–(c) with parameter values m/d = 0.15, α/d = 0.05, a/d = 0.175 in Fig. 6(a), a/d = 0.225 in Fig. 6(b)

and a/d = 0.275 in Fig. 6(c). The values for prograde orbits are represented by dashed lines, retrograde orbits by dotted lines, and solid lines

the perihelion shift without rotation (Weyl disc). We note that for prograde orbits the Kerr parameter lowers the angle of precession and has

an opposite effect for retrograde orbits. The signs in the expansion equation (34) also predict these effects.

Finally in Figs 7(a) and (b) the parameters m/d = 0.15 and a/d = 0.225 were held constant and the Kerr parameter was changed:

α/d = 0 (solid lines), α/d = 0.05 (dashed lines) and α/d = 0.1 (dotted lines). Prograde orbits are shown in Fig. 7(a) and retrograde orbits

in (b). Rotation has the same effect on both types of orbits as observed in Fig. 6.
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Figure 7. The perihelion shift �ϕ as function of excentricity e for the Kerr disc: (a) prograde orbits and (b) retrograde orbits. Parameters: m/d = 0.15, a/d =
0.225, α/d = 0 (solid lines), α/d = 0.05 (dashed lines) and α/d = 0.1 (dotted lines).

5 E F F E C T O F N E W TO N I A N P R E C E S S I O N

The advance of perihelion calculated for the relativistic models of discs presented in Sections 3 and 4 has two origins: one due to relativity and

other from purely Newtonian gravity, since any flattened body will generate a perihelion precession. Thus, it would be interesting to separate

the relativistic from the Newtonian contributions to the precession.

It can be shown that in the non-relativistic limit the above mentioned disc models reduce on the z = 0 plane to the Kuzmin model (Kuzmin

1956):

� = − m√
r 2 + a2

. (38)

The orbital equation in the usual cylindrical coordinates reads

dr

dϕ
= r

[
2r 2(EM − �)

h2
− 1

]1/2

, (39)

where EM is the conserved mechanical energy of the test particle

EM = r 2
p �p − r 2

m�m

r 2
p − r 2

m

, and h = 2r 2
p r 2

m(�p − �m)

r 2
p − r 2

m

, (40)

with the notation as defined in Section 3.1. Proceeding as in the previous sections, it is possible to deduce approximate expressions for the

perihelion shift. Using equations (3) and (38)–(40), one has the following expansion:

�ϕ = − 3πa2

d2(1 − e2)2
+ O((a/d)4). (41)

Note that the angle of advance is independent of m, which is cancelled in the fraction in equation (39). Thus, the first term of equation (41),

which also appears in expansions (14), (15), (24) and (34), is the purely Newtonian contribution up to third order to the perihelion shift.

As a numerical example, in Figs 8(a)–(c) we display curves of �ϕ as function of the excentricity e for the Schwarzschild disc in isotropic

coordinates with m/d = 0.01, a/d = 0.175 in Fig. 8(a), a/d = 0.225 in Fig. 8(b) and a/d = 0.275 in Fig. 8(c); the same values that were used

in Fig. 4. The solid lines represent the total angle of precession; the dotted lines represent the precession due to Newtonian effects obtained

from the numerical integration of equation (3) with equations (38)–(40), and the dashed lines are the difference between the previous two

values. It is seen that the precession rate due to Newtonian gravity is in the opposite sense to the relativistic precession. Also for less relativistic

discs the Newtonian contribution is more significant, as expected.

6 D I S C U S S I O N

We studied the advance of perihelion for elliptic orbits of test particles in geodesic motion on the galactic plane for relativistic static and

stationary disc models. We derived approximate expressions for the perihelion shift and compared them with the numerical integration of the

exact solutions. The results show that the angle of advance can increase as well as decrease with increasing excentricity. We have that highly

relativistic discs favours the first situation, and the advance of perihelion decreases with excentricity when the discs become less relativistic.

The effect of rotation was also studied for a particular stationary disc model based on the Kerr solution. We found that the Kerr parameter

lowers the perihelion shift for prograde orbits and increases it in the case of retrograde orbits. We also calculated the different contributions

(Newtonian and relativistic) to the advance of perihelion for the relativistic disc models.

Our conclusions are based on the study of a few exact general relativistic disc models, in particular, the Miyamoto–Nagai model, that

presents some characteristics of real galaxies. We believe that the results found may be common to other models of galaxies.
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Figure 8. The different contributions to the perihelion shift �ϕ as function of excentricity e for the Schwarzschild disc in isotropic coordinates. Parameters:

m/d = 0.15, a/d = 0.175 in (a), a/d = 0.225 in (b) and a/d = 0.275 in (c). Solid lines: the total shift. Dotted lines: the purely Newtonian contribution. Dashed

lines: the relativistic contribution.
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