19 research outputs found

    Enhanced efficacy and increased long-term toxicity of CNS-directed, AAV-based combination therapy for Krabbe disease

    Get PDF
    Infantile globoid cell leukodystrophy (GLD, Krabbe disease) is a demyelinating disease caused by the deficiency of the lysosomal enzyme galactosylceramidase (GALC) and the progressive accumulation of the toxic metabolite psychosine. We showed previously that central nervous system (CNS)-directed, adeno-associated virus (AAV)2/5-mediated gene therapy synergized with bone marrow transplantation and substrate reduction therapy (SRT) to greatly increase therapeutic efficacy in the murine model of Krabbe disease (Twitcher). However, motor deficits remained largely refractory to treatment. In the current study, we replaced AAV2/5 with an AAV2/9 vector. This single change significantly improved several endpoints primarily associated with motor function. However, nearly all (14/16) of the combination-treated Twitcher mice and all (19/19) of the combination-treated wild-type mice developed hepatocellular carcinoma (HCC). 10 out of 10 tumors analyzed had AAV integrations within the Rian locus. Several animals had additional integrations within or near genes that regulate cell growth or death, are known or potential tumor suppressors, or are associated with poor prognosis in human HCC. Finally, the substrate reduction drug L-cycloserine significantly decreased the level of the pro-apoptotic ceramide 18:0. These data demonstrate the value of AAV-based combination therapy for Krabbe disease. However, they also suggest that other therapies or co-morbidities must be taken into account before AAV-mediated gene therapy is considered for human therapeutic trials

    Bone Marrow Transplantation Augments the Effect of Brain- and Spinal Cord-Directed Adeno-Associated Virus 2/5 Gene Therapy by Altering Inflammation in the Murine Model of Globoid-Cell Leukodystrophy

    Get PDF
    Globoid-cell leukodystrophy (GLD) is an inherited demyelinating disease caused by the deficiency of the lysosomal enzyme galactosylceramidase (GALC). A previous study in the murine model of GLD (twitcher) demonstrated a dramatic synergy between CNS-directed adeno-associated virus 2/5 (AAV2/5) gene therapy and myeloreductive bone marrow transplantation (BMT). However, the mechanism by which these two disparate therapeutic approaches synergize is not clear. In addition, the therapeutic efficacy may have been limited since the CNS-directed gene therapy was restricted to the forebrain and thalamus. In the current study, intrathecal and intracerebellar injections were added to the therapeutic regimen and the mechanism of synergy between BMT and gene therapy was determined. Although AAV2/5 alone provided supraphysiological levels of GALC activity and reduced psychosine levels in both the brain and spinal cord, it significantly increased CNS inflammation. Bone marrow transplantation alone provided essentially no GALC activity to the CNS and did not reduce psychosine levels. When AAV2/5 is combined with BMT, there are sustained improvements in motor function and the median life span is increased to 123 d (range, 92–282 d) compared with 41 d in the untreated twitcher mice. Interestingly, addition of BMT virtually eliminates both the disease and AAV2/5-associated inflammatory response. These data suggest that the efficacy of AAV2/5-mediated gene therapy is limited by the associated inflammatory response and BMT synergizes with AAV2/5 by modulating inflammation

    Development of Sensory, Motor and Behavioral Deficits in the Murine Model of Sanfilippo Syndrome Type B

    Get PDF
    BACKGROUND: Mucopolysaccharidosis (MPS) IIIB (Sanfilippo Syndrome type B) is caused by a deficiency in the lysosomal enzyme N-acetyl-glucosaminidase (Naglu). Children with MPS IIIB develop disturbances of sleep, activity levels, coordination, vision, hearing, and mental functioning culminating in early death. The murine model of MPS IIIB demonstrates lysosomal distention in multiple tissues, a shortened life span, and behavioral changes. PRINCIPAL FINDINGS: To more thoroughly assess MPS IIIB in mice, alterations in circadian rhythm, activity level, motor function, vision, and hearing were tested. The suprachiasmatic nucleus (SCN) developed pathologic changes and locomotor analysis showed that MPS IIIB mice start their daily activity later and have a lower proportion of activity during the night than wild-type controls. Rotarod assessment of motor function revealed a progressive inability to coordinate movement in a rocking paradigm. Purkinje cell counts were significantly reduced in the MPS IIIB animals compared to age matched controls. By electroretinography (ERG), MPS IIIB mice had a progressive decrease in the amplitude of the dark-adapted b-wave response. Corresponding pathology revealed shortening of the outer segments, thinning of the outer nuclear layer, and inclusions in the retinal pigmented epithelium. Auditory-evoked brainstem responses (ABR) demonstrated progressive hearing deficits consistent with the observed loss of hair cells in the inner ear and histologic abnormalities in the middle ear. CONCLUSIONS/SIGNIFICANCE: The mouse model of MPS IIIB has several quantifiable phenotypic alterations and is similar to the human disease. These physiologic and histologic changes provide insights into the progression of this disease and will serve as important parameters when evaluating various therapies

    New Strategies for Enzyme Replacement Therapy for Lysosomal Storage Diseases

    No full text
    Enzyme replacement therapy is an established means of treating lysosomal storage diseases. Infused enzymes are normally targeted to the lysosomes of affected cells by interactions with cell-surface receptors that recognize carbohydrate moieties such as mannose and mannose 6-phosphate on the enzymes. Therefore, we have investigated alternative strategies to deliver the lysosomal enzyme β-glucuronidase in the enzyme-deficient mucopolysaccharidosis type VII mouse model. Here we summarize our recent efforts to use nontraditional ways to deliver β-glucuronidase. First, we used a chimeric protein of the insulin-like growth factor II (IGF-II) fused to β-glucuronidase to deliver enzyme via the IGF-II binding site on the bifunctional IGF-II/mannose 6-phosphate receptor. Second, we used the 11-amino-acid human immunodeficiency virus (HIV) Tat domain fused to β-glucuronidase to mediate uptake by absorptive endocytosis. Interaction with heparan sulfate on the cell surface internalizes and delivers the Tat-tagged enzyme to the lysosome via plasma membrane recycling. Third, we created a chimeric β-glucuronidase fused to the Fc portion of human immunoglobulin G (IgG) Fc, which was transported by the neonatal Fc receptor from the maternal circulation across the placenta to sites of storage in fetal tissues. Finally, periodate treatment was used to eliminate interaction with carbohydrate receptors, creating an enzyme with increased plasma half-life, resulting in transport across the blood–brain barrier and clearance of storage in neurons. These strategies for delivering lysosomal enzymes could also be used to target nonlysosomal proteins or enzymes identified for bioremediation of other conditions
    corecore