274 research outputs found

    Rotational cooling of molecules using lamps

    Full text link
    We investigate theoretically the application of tailored incoherent far-infrared fields in combination with laser excitation of a single rovibrational transition for rotational cooling of translationally cold polar diatomic molecules. The cooling schemes are effective on a timescale shorter than typical unperturbed trapping times in ion traps and comparable to obtainable confinement times of neutral molecules.Comment: 5 pages, 2 figure

    Singular solutions to a nonlinear elliptic boundary value problem originating from corrosion modeling

    Get PDF
    We consider a nonlinear elliptic boundary value problem on a planar domain. The exponential type nonlinearity in the boundary condition is one that frequently appears in the modeling of electrochemical systems. For the case of a disk we construct a family of exact solutions that exhibit limiting logarithmic singularities at certain points on the boundary. Based on these solutions we develop two criteria that we believe predict the possible locations of the boundary singularities on quite general domains

    Effective Behavior of Clusters of Microscopic Cracks Inside a Homogeneous Conductor

    Get PDF
    We study the effective behaviour of a periodic array of microscopic cracks inside a homoge­neous conductor. Special emphasis is placed on a rigorous study of the case in which the corresponding effective conductivity becomes nearly singular, due to the fact that adjacent cracks nearly touch. It is heuristically shown how thin clusters of such extremely close cracks may macroscopically appear as a single crack. The results have implications for our earlier work on impedance imaging

    Probabilistic state preparation of a single molecular ion by projection measurement

    Full text link
    We show how to prepare a single molecular ion in a specific internal quantum state in a situation where the molecule is trapped and sympathetically cooled by an atomic ion and where its internal degrees of freedom are initially in thermal equilibrium with the surroundings. The scheme is based on conditional creation of correlation between the internal state of the molecule and the translational state of the collective motion of the two ions, followed by a projection measurement of this collective mode by atomic ion shelving techniques. State preparation in a large number of internal states is possible.Comment: 4 pages, 2 figures, 2 table

    Microwave quantum logic spectroscopy and control of molecular ions

    Get PDF
    A general method for rotational microwave spectroscopy and control of polar molecular ions via direct microwave addressing is considered. Our method makes use of spatially varying ac Stark shifts, induced by far off-resonant, focused laser beams to achieve an effective coupling between the rotational state of a molecular ion and the electronic state of an atomic ion. In this setting, the atomic ion is used for read-out of the molecular ion state, in a manner analogous to quantum logic spectroscopy based on Raman transitions. In addition to high-precision spectroscopy, this setting allows for rotational ground state cooling, and can be considered as a candidate for the quantum information processing with polar molecular ions. All elements of our proposal can be realized with currently available technology.MIT-Harvard Center for Ultracold AtomsUnited States. Defense Advanced Research Projects Agency. Quantum Entanglement Science and TechnologyUnited States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiativ

    Blackbody-radiation-assisted molecular laser cooling

    Full text link
    The translational motion of molecular ions can be effectively cooled sympathetically to temperatures below 100 mK in ion traps through Coulomb interactions with laser-cooled atomic ions. The distribution of internal rovibrational states, however, gets in thermal equilibrium with the typically much higher temperature of the environment within tens of seconds. We consider a concept for rotational cooling of such internally hot, but translationally cold heteronuclear diatomic molecular ions. The scheme relies on a combination of optical pumping from a few specific rotational levels into a ``dark state'' with redistribution of rotational populations mediated by blackbody radiation.Comment: 4 pages, 5 figure

    Rotational cooling of heteronuclear molecular ions with ^1-Sigma, ^2-Sigma, ^3-Sigma and ^2-Pi electronic ground states

    Full text link
    The translational motion of molecular ions can be effectively cooled sympathetically to translational temperatures below 100 mK in ion traps through Coulomb interactions with laser-cooled atomic ions. The ro-vibrational degrees of freedom, however, are expected to be largely unaffected during translational cooling. We have previously proposed schemes for cooling of the internal degrees of freedom of such translationally cold but internally hot heteronuclear diatomic ions in the simplest case of ^1-Sigma electronic ground state molecules. Here we present a significant simplification of these schemes and make a generalization to the most frequently encountered electronic ground states of heteronuclear molecular ions: ^1-Sigma, ^2-Sigma, ^3-Sigma and ^2-Pi. The schemes are relying on one or two laser driven transitions with the possible inclusion of a tailored incoherent far infrared radiation field.Comment: 16 pages, 13 figure
    • …
    corecore