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Radiation oncology, a major treatment modality in the care of patients

with malignant disease, is a technology- and computer-intensive medical

specialty. As such, it should lend itself ideally to data science methods,

where computer science, statistics, and clinical knowledge are combined to

advance state-of-the-art care. Nevertheless, data science methods in radia-

tion oncology research are still in their infancy and successful applications

leading to improved patient care remain scarce. Here, we discuss data

interoperability issues within and across organizational boundaries that

hamper the introduction of big data and data science techniques in radia-

tion oncology. At the semantic level, creating common underlying models

and codification of the data, including the use of data elements with stan-

dardized definitions, an ontology, remains a work in progress. Method-

ological issues in data science and in the use of large population-based

health data registries are identified. We show that data science methods

and big data cannot replace randomized clinical trials in comparative effec-

tiveness research by reviewing a series of instances where the outcomes of

big data analyses and randomized trials are at odds. We also discuss the

modern wave of machine learning and artificial intelligence as represented

by deep learning and convolutional neural networks. Finally, we identify

promising research avenues and remain optimistic that the data sources in

radiation oncology can be linked to yield important insights in the near

future. We argue that data science will be a valuable complement to, but

not a replacement of, the traditional hypothesis-driven translational

research chain and the randomized clinical trials that form the backbone

of evidence-based medicine.

1. Introduction

Data science is a multidisciplinary field that uses scien-

tific methods, processes, algorithms, and systems to

extract knowledge and insights from structured and

unstructured data (Wikipedia, 2019). Data science is

emerging as a new paradigm in the biomedical

sciences, distinct from conventional theoretical and

empirical science. In this new paradigm, patterns

detected in large sets of clinical data provide a means

to understand the nature of disease and its response to

therapy, either alone or by representing a bedside-to-

bench inverse translation, in which hypotheses are

derived from clinical outcome data and then later

studied in detail in the laboratory or tested in con-

trolled clinical trials.

Abbreviations

API, application programming interface; DL, deep learning; EHR, electronic health record; PRO, patient-reported outcome; R&V, electronic

record-and-verify systems; RGC, Radiogenomics Consortium; SNP, single nucleotide polymorphism.
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A successful data science project should combine

computer science, statistical knowledge, and domain

knowledge from the field of interest.

Radiotherapy is a mainstay in modern anticancer

therapy and is indicated in more than half of cancer

patients at some point during disease management

(Lievens and Grau, 2012). Modern radiotherapy is a

computer-intensive and technology-heavy discipline

with regulatory requirements for documenting and ver-

ifying radiotherapy exposure and should therefore be

well suited for data science advances.

In the present review, we focus on data science in

radiation oncology, as defined by the combination of

data analytics and big data sources with the ultimate

aim of gaining insights into improved therapy for

future cancer patients. The data science paradigm can

be contrasted with the translational research chain

paradigm (Fig. 1), and in this review, we define data

science as shown in Fig. 1. It should be mentioned

that the workflow in radiation oncology is complex

and involves many tasks that are likely to be success-

fully automated or at least partly supported by tools

developed using machine learning techniques (Meyer

et al., 2018; Thompson et al., 2018). Although there

are some promising parallels between these efforts and

the data science approach discussed here, it is beyond

the scope of this review to cover the automation of

radiation treatment planning and delivery in any

detail.

Data science is, in many ways, a compelling concept

in the field of radiation oncology. First and foremost,

a data science approach seeks to analyze data on

human patients treated as part of clinical routine. Pre-

clinical tumor models show many important biological

differences to spontaneous tumors in humans. With

current advances in the understanding of the impor-

tance of host–disease interactions (Hanahan and Wein-

berg, 2011), in particular with the rise of immuno-

oncology, including immunotherapy–radiotherapy
combinations, the limitations of relying mainly on

in vitro assays and small-animal models to develop

new therapies are clear. Secondly, adverse events of

radiation therapy depend not only on the detailed

deposition of dose in time and space but also on

patient-level comorbidities, comedications, and patient

age (Bentzen, 2006). These are cofactors that are diffi-

cult to represent adequately in preclinical models.

Also, the analysis of routine clinical data is a promis-

ing complement. Indeed, we have seen examples where

human outcome data analysis has been used to

describe the detrimental impact of radiotherapy on the

immune system (Shiraishi et al., 2018; Terrones-Cam-

pos et al., 2019; van Rossum et al., 2020). Such

findings might may serve as an important context for

preclinical studies that aim to explore the beneficial

effect of radiation for immune therapy (Durante and

Formenti, 2019; Formenti and Demaria, 2013).

Thirdly, although the controlled clinical trial is very

likely to remain as the gold standard in evidence-based

radiation oncology (Bentzen, 1998; Bentzen and Yar-

nold, 2014), there are numerous types of questions that

cannot easily be subjected to clinical trial methodol-

ogy. Big data from population-level registries are

increasingly emerging as an important complement to

trial outcomes, as discussed further below. In the case

of radiation oncology, however, the big data are

unfortunately often not all that big.

In this review, we discuss the data sources involved

in radiation oncology data science, the methodological

hurdles to consider when using big data sources, and

potential solutions and promising future research ave-

nues. We finish with an important discussion of the

clinical utility of the knowledge obtained from data

science in radiation oncology.

2. Data sources and missing links in
radiation oncology

Large databases of treatment and outcome data have

long been available for healthcare providers and

researchers in multiple countries and regions across

the globe. Databases provide essential reimbursement

mechanisms for healthcare providers across public and

insurance-based systems alike. Furthermore, most

developed countries have national cancer registries

with mandatory reporting of incident cases.

At the hospital level, electronic health records

(EHRs) have long been in routine use in developed

countries, and few will disagree that EHRs will expand

their future role as an integral part of the hospital data

infrastructure. Finally, focusing on the radiotherapy

providers, electronic record-and-verify (R&V) systems

are mandatory for documenting detailed radiation

exposure and for improving patient safety. Detailed

exposure data for all patients are stored and must be

retrievable for clinical use in the common event of a

future indication for re-irradiation. These different

data sources, together with their key strengths and

weaknesses, are shown in Fig. 2.

We note a substantial challenge in radiotherapy data

science: the immediate loss of detailed radiotherapy

exposure data when moving data from the departmen-

tal R&V database to other data sources. Hospital

EHRs will typically carry information on prescription

dose, time, and delivered number of fractions, but not

the 3D dose distribution data available from R&V
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records. When moving beyond the hospital to claims-

based registries or tumor registries, radiotherapy is

often only recorded as a one-bit yes/no item, which,

with few exceptions, preclude meaningful inference

with regard to the optimal use of radiotherapy. Con-

versely, the R&V databases lack the crucial long-term

outcome data from the larger systems (Fig. 3) and will

often be limited in terms of the number of individuals

treated. Even when patient-level links exist between

these databases, developing an ontology for defining

structures and for reporting doses for R&V records,

and for defining specific long-term outcomes on the

registry side, remains work in progress.

Powerful examples of the value of establishing a

widely adopted ontology include the TNM classifica-

tion for staging of cancer, developed between 1943

and 1952 by P. Denoix at the Institute Gustave-

Roussy. This ontology was subsequently adopted by

the Union for International Cancer Control (UICC),

the International Federation of Gynecology and

Obstetrics (FIGO), and the American Joint Committee

for Cancer (AJCC) (UICC, 2017). Another example is

the development of the Common Terminology Criteria

for Adverse Events (CTCAE), which has been widely

adopted by many single or multimodality cancer stud-

ies (Trotti et al., 2003). In radiation oncology, there

have also been commendable efforts to standardize

organ delineation for radiation therapy planning and

the corresponding nomenclature used in routine clini-

cal care (Duane et al., 2017; Landberg et al., 2016;

Offersen et al., 2015).

Nevertheless, ensuring the interoperability of data-

bases requires us to do more. We need to define a set

of minimum data elements to record radiation modal-

ity and delivery technique, which would be an impor-

tant step forward (Hayman et al., 2019). However, the

effort needed to achieve a full, meaningful annotation

of complex 3D imaging and exposure data is substan-

tial. It should be recognized that manual annotations

are often inconsistent even within a department and

that they are generally restricted to the normal struc-

tures necessary for treating the patient in question; fur-

ther details needed for research cannot be expected to

be reliably annotated in clinical routine databases.

Having said that, the retrospective estimation of

dosimetry might be possible in the absence of 3D

Basic science In vitro study Pre-clinical animal models Phase I trial Phase III trial Adoption/population

Adoption/population
Machine learning

statistical modeling
Basic science

Trial

Laboratory

Data science

Translational research

Data aggregation

Fig. 1. The translational research chain versus the data science approach.
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dosimetry data in selected cases: For example, cardiac

exposure after breast and lymphoma treatment can be

reasonably reliably quantified from 2D portal images

or treatment descriptors in historical series (Darby

et al., 2013; Maraldo et al., 2015; van Nimwegen

et al., 2017). Modern radiotherapy planning is becom-

ing increasingly individualized, however, and therefore,

such retrospective dosimetry will, in most cases, be

unreliable with current radiotherapy (Maraldo et al.,

2012). The studies of cardiac exposure demonstrate

another main strength of data science: the potential

ability to study relatively rare, high-grade toxicity end-

points of high clinical relevance, such as major coro-

nary events (Darby et al., 2013). Most institutional

series will not have enough power to resolve any rele-

vant exposure–risk relationships for high-grade toxicity

events. Consequently, low-grade clinical endpoints

(such as low-grade radiation pneumonitis for lung

exposure; Marks et al., 2010a; Marks et al., 2010b)

often form the basis for recommended dose con-

straints, even when the disease itself has a dismal prog-

nosis.

As an alternative to using the registries mentioned

here, multiple institutions have successfully combined

data in population-based studies (Thorsen et al., 2016)

in which the numbers of cases reach several thousands,

but in which dosimetry data remain limited. Finally,

the concept of federated learning has been proposed

and demonstrated as a means by which to combine

insights from institutional series without the logistical

and legal complexities of sharing patient data

(Defraene et al., 2019; Jochems et al., 2017). However,

the numbers of patients and the dosimetric granularity

offered by current published examples of federated

learning remain limited, as shown in Fig. 3. We now

leave the data source discussion to focus on challeng-

ing aspects of the data analysis itself.

3. Applying data science to radiation
oncology: The methodological
challenges

Here, we discuss the methodological challenges of

applying data science to radiation oncology. It should

be emphasized that the covariates, as well as the end-

points that are analyzed, should be defined by clinical

relevance or scientific interest and not by availability.

When analyzing and publishing the data science mate-

rial, it is relevant to keep some terms and concepts in

mind. The safest route to appease a peer reviewer is to

Population based
Tumor stage info

All modalities

Only mortality as outcome
RT yes/no at best

Missing clinical data

Limited RT data
Long-term data missing

Missing ontology

Lab data, medications, procedures
Image data

Written charts

RT yes/no at best
No tumor details

Baseline lab data missing

Long term data
Detailed outcome (procedures)

Ontology (ICD10)

3D RT exposure
Tumor delineations

Images: baseline, during RT

Missing other treatment data
No outcome data
Limited ontology

Data loss
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Data loss

Linkage possible

Claims based 
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Tumor registries

Radiation Dose 
Plan Bank

Electronic 
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Fig. 2. Key sources of data and points of radiation data loss. From lower left and counterclockwise, radiation dose plan banks are currently

available in all modern institutions as record-and-verify systems that contain image data and 3D radiation dose exposure, but no follow-up

data. Hospital-based EHR systems contain more detail on other treatments, but do not contain detailed, granular radiotherapy data; such

data are often reduced to prescription dose/fractionation. Radiotherapy data are further lost when these data are moved to large claims-

based registries or tumor registries, where data on various aspects of long-term outcome are available. Red boxes: examples of main

shortcomings of data source. Green boxes: examples of main strengths.
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argue that the objective of a data science publication is

to elucidate associations in data. A limitation of this

approach, however, is that the presence of associations

rarely has any clinical relevance. The next step would

be to perform prediction of outcome. Predictive mod-

els rely on one or more covariates that together give

an (ideally) robust assessment of the probability of a

given endpoint (Collins et al., 2014, 2015). Note that

the covariates need not be causally related to the end-

point in question to provide an accurate outcome pre-

diction. The downside of predictive modeling without

causal content is that the use of further refined radio-

therapy to modify a dose distribution-related covariate

might fail to provide the expected clinical benefit if

other associations are broken, for example, when mov-

ing from photon to proton therapy. Causal relation-

ships are generally preferable to both association

studies and predictions without causal inference, but

inference methods rely on avoiding bias. Here, the

most robust method is the randomized controlled trial,

but other methods exist where randomization is not

feasible (Pearl, 2009).

Although causal inference is challenging, and prone

to residual bias and confounding even when exercising

the best possible care (cf. Fig. 4), such methods are

likely to be more efficient when combined with

improved, prospective outcome reporting, across a

change of treatments (e.g., when moving from photon

to proton therapy). Such prospective data registration

programs are in place at a few leading institutions,

with the Dutch-coordinated effort in head-and-neck

cancer radiotherapy across modalities and institutions

as a prime example (Verdonck-de Leeuw et al., 2019).

Patient-reported outcomes (PROs) are also of great

interest in relation to toxicity assessments, and some

data suggest that they can improve routine clinical

care (Basch et al., 2017). More research is needed,

however, into the relationship that exists between

PROs, and physician-assessed and analytical toxicity

endpoints.

In order to be relevant and acceptable to radiation

oncologists, predictive models must account for

already well-established risk factors. In terms of the

risk of toxicity, several clinical covariates have already

been established (Appelt et al., 2014; Thor et al., 2019;

Vogelius and Bentzen, 2012), and should be accounted

for in the modeling. When it comes to disease-control

endpoints, adjustment for disease stage is clearly neces-

sary (and often available in tumor registries), but more

detailed knowledge of disease burden and other prog-

nostic factors might be important as well, in order to

test the added utility of novel prognostic assays. For

example, tumor volume and HPV status have been

shown to provide more robust predictors of survival

than radiomics features in head-and-neck cancer (Ger

et al., 2019). Similar examples exist of clinical factors

that confound image-derived features in lung cancer
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Fig. 3. Schematic illustration of loss of granularity of radiotherapy

data when moving from single institutional series to the largest of

available datasets. This graph provides a schematic illustration of the

level of radiotherapy data granularity versus sample sizes across

selected published studies and available databases in the United

States as examples. QUANTEC (Marks et al., 2010a) is an example

of a federated learning model that aims to bridge institutional series

(Defraene et al., 2019). Also shown is a population-based series of

breast cancer patients without detailed dosimetry, but with

information available about whether internal mammary nodes were

included in the radiotherapy target (Thorsen et al., 2016). The graph

also shows the number of patients in randomized trials of external

beam radiotherapy (EBRT) for prostate cancer (Vogelius and

Bentzen, 2018; Widmark et al., 2019), the number of patients in

Radiation Therapy Oncology Group (RTOG) trial databases (personal

communication), and the number of breast cancer patients in the

National Cancer Database (NCDB) and Medicare. Where long-term

outcomes are available in the large series (to the right), radiotherapy

information is often reduced to one bit of information (radiotherapy

given or not) in these studies (McGale et al., 2016). Abbreviations:

QUANTEC: Quantitative Analyses of Normal tissue Effects in the

Clinic. RT, radiotherapy; RCT, randomized controlled trial.
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(Davey et al., 2020). An important general discussion

of such problems can be found in Welch et al. (2019).

Some authors have argued in favor of registry-based

studies by highlighting the many obstacles that are

encountered when designing and conducting large, ran-

domized controlled trials (Quon et al., 2019). The

problem remains, however, that even after adjusting

for available known covariates, hidden biases might

still exist. This is exactly why the randomized con-

trolled trial remains the gold standard of generating

medical evidence in comparative effectiveness research.

This does not preclude, however, mathematical model-

ing and data science methods as a component of evi-

dence-based medicine.

4. Mathematical modeling and
evidence-based medicine

Mathematical modeling is an attractive method for

data-driven inference, where evidence from random-

ized trials is not available, trials are not feasible, or as

a tool to describe heterogeneity in treatment effect.

But how do we build confidence in a predictive model

that supports clinical decisions? A key element to this

end is external validation, that is, a quantitative assess-

ment of a model’s performance in an independent

dataset. There is a rich statistical literature on the vali-

dation of models (Collins et al., 2014, 2015). However,

the term validation itself is not consistently defined

(Altman and Royston, 2000), especially in radiation

oncology, where exposure variables are often corre-

lated. Still, most validation studies tend to conclude

that the model tested is indeed valid! But there is no

consensus among radiation oncology modelers as to

what this exactly means. And validation is only mean-

ingful within a carefully specified domain; models are

most often not generalizable across domains. For

example, a dose–volume–response model developed

from photon therapy outcomes in adults may have

been ‘validated’ in a similar setting but may not per-

form well in a cohort of patients treated with proton

therapy, or in a population of, say, pediatric patients.

Using the literature, we have compared data science

approaches against the gold standard of the random-

ized controlled trial in some radiotherapy-relevant

cases (Ang et al., 2014; McGale et al., 2016; Pignon

et al., 2009; Zandberg et al., 2018), where the effect

size of an intervention has been estimated using both

methods (Fig. 4). In many cases, the randomized con-

trolled trial and registry-based effect estimates do not

fall on the diagonal line of agreement, even when con-

sidering their confidence intervals. Or they are in direct

contradiction (as shown by the gray zones in Fig. 4).

The meta-analysis by Pignon et al. (2009) shows that

the coordinated synthesis of trial outcomes can yield

statistical power that is comparable to that of registry

analysis but without the associated risk of bias. It is

remarkable that the confidence intervals of well-con-

ducted meta-analyses are often comparable to those of

registry studies, despite fewer patients (Pignon et al.,

2009). This is an indication that statistical power in

registry studies is not limited by sampling variation

alone, but by an overdispersion of effect sizes between

individuals in the data, resulting from heterogeneity of

treatment effects. It should be emphasized that for reg-

istry studies, it is the management of bias/confounding

that dominates over statistical sampling uncertainty.

P-values, which were developed to compare small sam-

ple sizes, often look impressive at face value in registry

studies, but should largely be ignored because bias/

confounding is the real concern (cf. Fig. 4). Effect sizes

with confidence intervals are much more informative,

but even these should be tempered by a careful analy-

sis of possible bias.

The limitations of data science should thus be recog-

nized in comparative effectiveness research. However,

data science is an important and very relevant supple-

ment to the paradigm of translational research, in par-

ticular for questions that are not amenable to being

investigated by randomized controlled trials. This

includes the previously mentioned example of a dose–
response relationship for cardiotoxicity. In the next

section, we discuss the dominant methodological devel-

opment in data science, artificial intelligence, or, more

precisely, deep learning (DL) methods.

5. Artificial intelligence: Deep
learning

Machine learning is a branch of artificial intelligence, in

which a mathematical model is built based on a sample

dataset, known as the ‘training dataset’. This field of

data science is being revolutionized by DL methods, a

term that is typically associated with the training of mul-

tiple-layered/deep neural networks. DL techniques are

increasingly being explored in radiotherapy, for pur-

poses such as treatment planning, setup, verification,

adaptation, or follow-up in clinics and in research

(Meyer et al., 2018; Sahiner et al., 2019). In contrast to

methods that combine selected and designed features

and classifiers, DL utilizes end-to-end representation

learning, in which features and their combinations are

learned at multiple hierarchies jointly to solve a particu-

lar prediction task directly from data. This is one of the

reasons for this approach’s success. DL most often

involves learning from suitably sampled training data
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with ground-truth annotation provided by human

experts or observed clinical outcome, so-called super-

vised learning. Less frequent applications involve

semisupervised and even unsupervised learning, in

which learning is done by finding inherent structures in

the data with limited or no ground truth provided (see

Table 1 for a glossary of terms).

Employed DL models can easily fit to both relevant

and spurious signals and even to random noise in the

training data (Zhang et al., 2016), and the perfor-

mance or ability to generalize to unseen data is there-

fore the relevant measure of success. The

generalization error of a DL model, given a problem

and training data, is something that must be empiri-

cally estimated, and occasional failures should be

expected and recognized as an inherent property of the

DL approach. As DL methods become an integral

part of clinical workflow and research, these risks must

be properly assessed. It is not enough to assess a DL

model’s performance on measures, such as average

similarity of segmentations and reconstructed images,

with ground truths that are often clinically irrelevant.

This is because DL methods are surprisingly good at

recognizing and replicating even complex signals that

often appear in the training data, while potentially fail-

ing to recognize obvious but rare signals that occur

clinically (Meyer et al., 2018). Estimates of prediction

uncertainty in DL models could be used to raise warn-

ing flags in such cases. Such estimate prediction tech-

niques include Monte Carlo dropout (Kendall and

Gal, 2017), model ensembles (Lakshminarayanan

et al., 2017), and variational autoencoders (Hu et al.,

2019; Kohl et al., 2018), which function by allowing

many different predictions to be generated for each
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Fig. 4. A comparison of effect-size estimates from randomized controlled trials and registry-based analyses. The schematic shows

published effect-size estimates from randomized controlled trials (x-axis) and registry-based analyses (y-axis). Concordant effect sizes are

indicated by the black identity line. We see examples of registry-based studies over- and underestimating effects, as well as being relatively
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data point. Under the critical assumption that the

training set is representative of the underlying true dis-

tributions, such methods should be able to convey the

variation of predictions to the end user, whether they

are a scientist or clinician. However, more work is

needed to bridge this critical gap of conveying uncer-

tainty information when using these novel modeling

approaches.

A related critique about DL methods is the ‘black-

box’ nature of its output, which can result in a lack of

transparency or even interpretability (Vollmer et al.,

2020). Because DL methods consist of deep hierarchies

of nonlinear functions, whose many parameters are

entirely learned from data, understanding their inner

workings and predictions is not straightforward. This

contrasts with conventional regression models that

base their predictions on handcrafted features, and on

the statistical significance and the associated effect size

(e.g., relative risk or hazard ratio) for each feature,

which can be reported to understand the drivers of the

model. Understanding why and how DL models work

is an active research area, as is conveying such

Table 1. Glossary of data science terms.

Application programming interface

(API)

Communication protocol that allows external communication with software or server. In this field, APIs

allow researchers to write code (scripts) to query radiotherapy databases to extract features from

(large numbers of) individual patients’ scan or dosimetry data

Artificial neural networks (ANNs) An ANN is a network of artificial neurons, connected such that output from a given neuron forms the

input to one or more neurons in the next ‘layer’. Passing input data through many successive such

layers allows for complex transformations, that is, complex mathematical functions that link a set of

inputs to a specific output

Artificial neuron The artificial neuron is the basic building block of an ANN. It is a mathematical function that takes

multiple real-valued inputs, each of which is multiplied by a weight. These weighted inputs are then

summed and put into a so-called activation function that outputs a real value. The activation function

is typically a nonlinear function, for example, a sigmoid function

Deep learning (DL) A type of learning that uses multiple ANN layers to progressively extract higher level features from the

raw input

Federated learning (a.k.a.,

distributed learning)

This approach entails training a model simultaneously on several datasets that reside on different

servers while communicating model data (such as goodness-of-fit data and regression coefficients)

rather than exchanging the data itself

Generalization error Generalization errors are calculated by metrics that quantify the amount of error a prediction algorithm

makes on a set of previously unseen data

High-dimensionality datasets This is a general term used to describe datasets that contain large numbers of features per patient,

including genomic data and image features

Machine learning (ML) The study of how computers learn from data to solve problems. ML is also used to refer to algorithms

or systems that learn from data how to solve a task, as opposed to being explicitly programmed how

to do so

Multiple-layered network/deep

neural networks

These are neural networks that consist of many layers of neurons between the input and output, such

that the output of one layer becomes input for the next

Ontology Representation, formal naming, and definition of the data in a field of research, examples are tumor

characteristics (e.g., UICC staging), organ delineation/naming, dose descriptors, and disease/

procedural codes

Record-and-verify databases Databases that were originally invented to document treatments and reduce risk of errors, and that

have evolved into complete information systems that contain image data, planned dose matrices, and

detailed delivery data. They usually have some sort of application programming interface

Semisupervised learning Machine learning from input data, where only a subset of input data is paired with output data, that is,

an approach that mixes supervised and unsupervised learning

Single-layer model This term describes conventional regression models that could be seen to provide a ‘single layer’: In

these models, a single mathematical descriptor (e.g., logistic function or Cox model) connects input

data to outcome prediction. It is used for illustration here, but it is not an often-used term

Supervised learning The task of learning a function that maps an input to an output, based on example input–output pairs.

Regression models are examples of this approach

Tall datasets These are ‘Big data’ datasets where the number of cases (individuals, patients) is much larger than the

number of features per case. Examples are population-based cancer registries or claims databases

Unsupervised learning This approach finds patterns in datasets without preexisting labels, that is, based solely on the

structure of the input data, which is also known as self-organization. Hierarchical clustering is an

example of such a method

Wide datasets ‘Big data’ datasets, in which the number of features (data items) per case is much larger than the

number of cases. Examples include data from genomics or proteomics or from medical imaging
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information to the end user (Gilpin et al., 2018). For

instance, possible insights into the inner workings of

trained DL models can be gained by perturbing inputs

and investigating the possible consequences, or by gen-

erating heat maps of the importance of a particular

part of the input for a given prediction (Ancona et al.,

2017; Sahiner et al., 2019).

The major factor that limits the performance of DL

methods in medicine is the lack of good-quality refer-

ence data to learn from, thus emphasizing the impor-

tance of bridging the gaps in the data sources

discussed earlier in the review. The performance of DL

models grows with the amount of data in the training

set, and although the performance of individual DL

models can become saturated after a certain amount

of data is included, further improvements can typically

be made by extending model architectures (Hestness

et al., 2017; Sun et al., 2017). Making public datasets

that comprise protected health information is compli-

cated by patient privacy concerns and laws, but has

the potential to contribute enormously to advancing

the field. The website grand-challenge.org hosts a large

number of challenges and datasets in medical imaging,

including the StructSeg2019 segmentation for radio-

therapy planning challenge 2019 (Structseg, 2019).

However, there is still a limited number of challenges

and datasets for radiotherapy applications available.

6. Promising solutions and leaps
forward

It is clear, that data loss is a primary obstacle to

applying data science to radiation oncology, in partic-

ular the loss of detailed information about radiation

exposure and image data when linking from dose plan

to outcome registries. However, promising tools exist

to overcome this data loss.

For instance, modern radiotherapy record-and-verify

systems now provide users with relatively accessible

interfaces to enable them to interact with data on a

database level, using a so-called application program-

ming interface (API). APIs are emerging as automa-

tion procedures, and they enable the reporting of

dose–volume data for available annotated body

regions in the dose planning systems (Cai et al., 2019;

Cardan et al., 2019). APIs have also been used to link

lung exposure to vital status registries (Stervik et al.,

2020). While these methods are still limited to struc-

tures delineated at the time of treatment planning and

stored in the database, it is still a substantial leap for-

ward from datasets that record dates, times, and pre-

scription dose, but not dose distribution (Rubinstein

and Warner, 2018).

Another approach to improve the interoperability of

distinct datasets is the establishment of large consortia

of collaborators. One example is the Early Breast Can-

cer Trialists’ Collaborative Group (EBCTCG), which

combines randomized trials data to achieve statistical

power comparable to registry studies (Fig. 4). Another

successful example is the Radiogenomics Consortium

(RGC). Radiogenomics is the scientific study of the

link between early or late radiation toxicity and com-

mon genetic variations, such as single nucleotide poly-

morphisms (SNPs). SNPs occur on average once in

every 1000 nucleotides in the human genome, which

means that there are roughly 4–5 million SNPs in an

individual patient’s genome. Due to the high dimen-

sionality of SNP datasets, the early literature on SNP

predisposing for radiation toxicity was dominated by

false-positive SNPs that were not validated in indepen-

dent data series (Barnett et al., 2012a). This issue,

combined with the inherently large number of covari-

ates that affect the phenotypic presentation and the

relatively low prevalence of many single-nucleotide

variants of potential interest, means that this research

field requires relatively large sample sizes to achieve

sufficient statistical power to detect clinically relevant

effect sizes (Barnett et al., 2012a). To this end, RGC

was established in 2009 (West and Rosenstein, 2010).

It consists of a large volunteer research network,

which currently comprises 222 members in 33 coun-

tries across 133 institutions. The RGC has successfully

identified SNPs involved in radiation toxicity

(Andreassen et al., 2016; Kerns et al., 2019), which are

of potential value in guiding therapy decisions in indi-

vidual patients (Bergom et al., 2019).

Federated learning is another collaborative

approach but one that removes the need to share pro-

tected health information. However, current publica-

tions from federated learning collaborations are

limited to sample sizes that are smaller than the most

prominent consortia (cf. Fig. 3).

Federated learning, consortia, or the automated

linkage of record-and-verify databases to registries all

suffer from a limited ontology of organ structure

delineations, as well as limited ontology for procedures

and endpoints. Adjusting for between-data-series vari-

ation is often an important contribution of consortia.

For example, RGC has contributed to the field’s

methodology by providing methods to standardize tox-

icity scores between data series (Barnett et al., 2012b).

The limited availability of organ delineations on rou-

tinely treated patients is a challenge that remains, but

automated delineation approaches are being actively

pursued by both commercial and academic researchers

as a way to counteract the continuously increasing
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burden of substructure delineation in clinical practice

(Zhu et al., 2019). These methods are expected to

improve in performance in coming years, and can also

be used to increase the granularity of organ exposure

in all of the above settings. In addition, structure

delineation might come to include much more detailed

substructures beyond those that are of current rele-

vance for guideline-driven radiation dose planning.

Figure 5 shows an example of automated airway and

vessel annotation on a routine scan from record-and-

verify database, which clearly exceeds the detail that

could ever be achieved on substantial patient numbers

with manual segmentation.

It should be emphasized that despite the difficulties

associated with data linkage and interpretation, a fun-

damental truth is that the data are there and the data

are accessible. We are no longer limited by manual

tape switching or by the need to burn and send

DVD’s, as we were just 10 years ago. We are in an era

where it is becoming realistic to perform large-scale

analysis of detailed exposure data across many

institutions. Despite the necessary efforts to secure

patient confidentiality and legal collaboration agree-

ments, there are good reasons to be optimistic about

the ability to harness data science in radiation oncol-

ogy.

7. Towards clinical utility

Turning to the discussion of clinical utility of data

science findings (Liu et al., 2019), it should be empha-

sized that the key word in data science is science rather

than data. The success of data science in radiation

oncology will ultimately be measured by the clinical

utility of the AI tools that are developed or by the

novel scientific insights that are uncovered by using

such methods, rather than by the simple ability to gen-

erate yet another prognostic model or by referring to

the amount of data analyzed.

To that end, the methodological challenges must be

overcome, and defining analyses and endpoints by

availability must be superseded by choosing covariates

Fig. 5. A DL algorithm to analyze radiation exposure in routine clinical setting. Output from a DL algorithm in the form of a 3D U-Net

architecture (Ronneberger et al., 2015). The algorithm was trained on a dataset of manual annotations of lung substructures (vessels and

airways). Subsequently, the DL algorithm performed annotations on a previously unseen routine, planning CT scan from a record-and-verify

system yielding the airway and vessel annotations in green shades depicted on the left. Right: The annotated CT scan is overlaid with a 3D

dose color wash to show the potential of automating access to detailed radiotherapy exposure data, which may subsequently be connected

to outcome data from the larger registries. Note that some of the smaller vessels are exaggerated in size due to partial volume effects.
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and endpoints based on clinical relevance and insight.

There is an urgent need for cancer-specific endpoints

rather than overall survival, which is used in even the

best current tumor registries.

Uncertainty, bias and generalizability should be

assessed critically to enable the end user clinician to

judge the validity of the model. This is not a new

insight (Wyatt and Altman, 1995), but it becomes even

more important in the era of neural networks and big

data science. The treating physician must fulfill the

role of a ‘learned intermediary’ when using decision

aids generated by data science and in order to fulfill

that role the predictive model must have face validity

and provide adequate descriptions of uncertainty. Clin-

ical credibility is certainly still relevant. This is also an

educational challenge: Radiation oncologists must be

taught how to read, understand, and critically appraise

papers that report data science results.

There are two examples of clinically relevant prob-

lems that can only be solved by big datasets and where

data science is particularly promising: re-irradiation and

detailed pattern-of-failure analysis. The retreatment of

patients is a very common challenge in radiation oncol-

ogy, yet our knowledge of organ tolerance is very lim-

ited. This is a complex problem where the intensity of

the first treatment, the time interval from the first treat-

ment, and the full time line of other anticancer medica-

tions are all expected to impact the risk of adverse

events. Similarly, our knowledge of the detailed pattern

of failure after primary radiation is currently limited to

small, opportunistic series that fail to reflect the fre-

quency of cancer recurrence after radiotherapy as a clin-

ical problem (Chao et al., 2003; Due et al., 2014;

Nygard et al., 2018). This is a major limiting factor in

harnessing the recent technological developments in

radiation oncology to provide a dose-painting approach

to radiotherapy, as envisioned decades ago by Ling

et al. (2000) and Bentzen (2005). Clearly, modern radio-

therapy equipment has the ability to meet these needs,

but the biological knowledge has to come from data

science, and the resulting data-driven hypotheses for

treatment improvements will subsequently need com-

parative effectiveness testing in controlled clinical trials.

8. Conclusion

In conclusion, data science has an important role to

play in radiation oncology and we are currently seeing

just the first wave of that influence. It should be

remembered, however, that data science should be

multidisciplinary, and as such, it should involve statis-

tical capabilities, and computational and domain

knowledge from clinical radiation oncology.

Clearly, the translational research chain has limita-

tions that are well described in the literature, including

the reproducibility crisis and, equally important but

less appreciated, the risk of falsely rejecting a good

target prior to entering the human testing phase (Bau-

mann et al., 2001; Begley and Ellis, 2012). The addi-

tion of big data and data science will supplement, but

not replace, the translational research chain. For data

science to achieve its potential in radiation oncology,

however, several breakthroughs are needed to over-

come the limitations mentioned above.

In our view, as shown in Fig. 1, data science should

complement translational science and traditional meth-

ods should be used to verify conclusions whenever

possible. Data science methods applied to large

curated datasets linking high-dimensionality biomarker

data with clinical outcome data have the potential to

provide tangible benefits to our future patients.

Domain knowledge, however, is a key ingredient

needed to harness the power of these methods.
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