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Abstract

We study the effective behaviour of a periodic array of microscopic cracks inside a homoge-
neous conductor. Special emphasis in placed on a rigorous study of the case in which the
corresponding effective conductivity becomes nearly singular, due to the fact that adjacent
cracks nearly touch. It is heuristically shown how thin clusters of such extremely close cracks
may macroscopically appear as a single crack. The results have implications for our earlier

work on impedance imaging.
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0 Introduction

Impedance imaging is a technique that has shown promise as a means for noninvasive testing.
The applications range from medical imaging to nondestructive testing of aircraft parts. In
practice this technique involves imposing an electric current (or a voltage potential) on the
exterior boundary of the object and then measuring the induced voltage potential (or the
associated electric current) on the same boundary. From this information one attempts to
determine the interior electrical conductivity of the object and thereby to recover information
about the object’s internal condition.

The usual mathematical formulation of impedance imaging results in an inverse problem,
specifically, the recovery of an unknown coefficient in an elliptic partial differential equation
from information about the Cauchy data for one or more solutions. This inverse problem
is ill-posed; small amounts of noise in the boundary data (electric currents and voltage
potentials) can lead to large variations in the estimated conductivity. Frequently, however,
one has a certain amount of a priori information about the nature of the conductivity, and
the incorporation of this information into the inversion process can serve to stabilize the
recovery. |

One such example concerns the recovery of a collection of perfectly insulating or perfectly
conducting cracks inside an otherwise uniform and isotropic two-dimensional electrical con-
ductor (cf., [1], [3], [6] and [10]). By a “crack” we in general mean an open C? curve which
does not intersect itself. However, some of the work on continuous dependence estimates and
most of the computational work has concentrated on the even more stable situation when
the cracks are assumed to be linear (cf., [2], [7], [10], and [12]). One question which naturally
arises out of these investigations is how well one can distinguish closely spaced cracks, i.e., to
what extent do closely spaced cracks appear as a single crack, and what is the quantitative
relation between the crack spacing and the resulting perturbations in the boundary data?

In this paper we provide an answer to this question. We determine the effective behavior
of a periodic cluster of small linear cracks and therefore implicitly quantify the effect on the
boundary data in terms of the orientation and spacing of the cracks. Qur results show that

the continuous dependence results for recovering closely spaced cracks from boundary data



should be remarkably good; even small gaps between the cracks make their presence strongly
felt in the boundary data. Our results are almost entirely rigorous cbnvergence estimates;
there is only one point at which we refer to heuristics - it is our firm belief that this passage
could also be made rigorous, however, to make the presentation of reasonable length we have
abstained from this here.

The organization of the paper is as follows. In the first section we consider a homogeneous
electric conductor with a periodic array of linear cracks, and we determine its electrical
properties as the array spacing tends to zero. Our analysis makes use of the techniques of
homogenization and two-scale convergence. We find that in the limit the material behaves
effectively like an anisotropic conductor whose precise form depends on the orientation and
relative spacing of the cracks. The determination of the exact dependence of this effective
conductor on the orientation and the relative spacing of the cracks requires some detailed
analysis and estimates concerning the so-called “cell” problem. Our main results concerning
this depedence are stated as Theorems 2.1 and 2.2, the completely rigorous analysis leading
to these results is the subject of sections 3 and 4 and an appendix (dealing with conformal
mappings). In section 5 we consider the behavior of a “thin” cluster of cracks inside a larger
homogeneous isotropic conductor, and we determine to what extent such a cluster manifests
itself as a single conductive or insulating crack. It is at this point in the paper we refer to
heuristics, essentially concerning the “locality of homogenization”. This section also contains
a brief discussion of the implications of our results for the stability of recovery of cracks by

impedance imaging.



In this section we will examine the behavior of an electric potential in a material which has an
array of periodically spaced insulating cracks. In particular we wish to review the derivation
of the effective equations which govern the potential as the array spacing approaches zero.
To this end we follow the work of Attouch and Murat ([5]) and that of Allaire ([4]). Let Q2 be
a bounded region in R? with C? boundary, and let Y denote [0, 1]?, the unit square in IR2.
CL(Y) denotes the space of k times differentiable functions on IR? which are periodic with
period cell Y, while L%(Y) and Hi(Y') denote the spaces obtained by completing Cg(Y)
with respect to the usual L?(Y) and H'(Y) norms, respectively.

Let o be a linear crack in Y as illustrated in Figure 1, and let o denote the angle of o
relative to the y; axis. We suppose that the cell Y has apriori been centered so that the
crack, o, extends from y; = s to y; = 1 — s through the point (1/2,1/2). We will use Y* to
denote the region Y \ 6. We use T to denote the set of all periodic integer translates of o,
i.e., all the points in IR? of the form (y; + j,y2 + k) with (41,y2) € o and j and k integers.

Y>

1

y=1-s

Yy=s

1 %

Figure 1: The region Y* =[0,1]2\ 0.

Let ¥, denote the set of p'bints of the form ey, y € L, with the further proviso that they
fall inside a rescaled and translated period cell (je, ke) + €Y fully contained in . Cracks for
which the corresponding e-sized period cells intersect 92 are excluded, to avoid any problems

with the boundary conditions. We define the domain €, = \ Z. as illustrated in Figure 2:



Figure 2: The domain ..

We assume that the material part of Q¢ has a constant isotropic electrical conductivity
equal to one. The cracks are insulating and so block the flow of electrical current. If an input
current g € L*(99) is applied on the outer boundary of {2, then thé induced electrostatic
voltage potential u.(z) will satisfy the elliptic boundary value problem

Au, = 0 in Q, (1.1)
‘2’7‘: = 0 on 89.\0Q, (1.2)
‘2‘: = g on 0Q, (1.3)

where n denotes an unit normal vector field on d,, which points outward on 9Q; it doesn’t
matter which direction n points on 99, \ 9 (the cracks). Since all the cracks have the same
orientation we shall indeed take the vectorfield n to be constant on 9, \ 9.

The function u.(z) is unique if we also require the normalization

/Q‘“‘(x)d“’=/0u¢(z)dx=0 .

The weak formulation of equations (1.1)-(1.3) is that u. € H'(,) satisfies

/ﬂ( Vi, Véds = /a _9bdS, (1.4)

for all functions ¢ € H'(f,). Here dS, denotes surface measure on 8.

We are interested in determining the effective electrical properties of the conducting
region {1, as the period cell size becomes infinitely small. This means examining the behavior
of u in the limit as ¢ tends to zero. Such an analysis can be carried out following exactly the
same technique as that used by Murat and Attouch for an almost identical problem ([5]).
One different aspect of the problem studied by Murat and Attouch owes to the fact that

5



they impose a unilateral constraint on the jump of the potential across the cracks. Such a
unilateral constraints for the normal displacement is very natural when modeling cracks in
elastic media — it is not relevant when u represents a voltage potential. Another difference is
that they impose homogeneous Dirichlet boundary conditions on 8§ and a non-zero external
force on the right hand side of the equation. None of these differences are essential. The

first step following the analysis of Attouch and Murat is to prove that

/ﬂ (1)*dz < C /ﬂ [Vu2dz . (15)

The proof of this proceeds exactly as in ([5]) using the same restriction-extension operator
as constructed there (a natural generalization of the extension operator used earlier by
Cioranescu and Saint Jean Paulin ([8]). The only difference for the present problem is that
we must use a Poincaré inequality with [, vdz = 0, as opposed to that with v = 0 on 9.
As an almost immediate biproduct of the analysis which leads to (1.5) we also get that

Lﬂ(uJ”dS,SC jﬂ IVuPdz . (1.6)

These estimates guarantee the existence of appropriately convergent subsequences. The
(unique) limit associated with these subsequences satisfies what amounts to the “standard”
homogenized boundary value problem. In order to describe this we need some notation. Let

xx(y) € H,(Y™) denote the periodic solution to the “cell” problem

Ayxk = 0 in R?\X (1.7
IOx
B ~n; on %,

the weak formulation of which is
/Y‘ VxiVw dy = —/Y. VurVw dy Vw e Hy(Y*) . (1.8)

The function x; is uniquely determined up to a constant. Let vy denote the symmetric,

positive definite 2 x 2 matrix with entries

Yii = /Y V(Y +x:) - V(y; + x;) dy
_ i 9%
= /Y. (5j+ ay;) dy.
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Let u € H*(§2) denote the unique solution to

V-4Vu=0 in$ 7g§=g on 0f1, (1.9)

with the normalization [y u dz = 0, and define u; € L*(Q; HL(Y™)) by

w = g @) + T al) - (1.10)

In order to describe the convergence of the solutions u, and their derivatives we find
it convenient to use the notion of two-scale convergence as developed by Nguetseng ([13])
and Allaire ([4]), even though the corresponding result is in a certain sense slightly weaker
than that in ([5]). We recall that a sequence of functions v.(z) in L*(Q) is said to two-scale
converge to a function vo(z,y) € L2( x Y) if

lim [ v(=(z,2/e)do = [ [ vo(e,5)p(z,5) dydz

for any function ¢ € C°(Q;CP(Y)). Here we have deviated a little from the definition
given in ([4]), in that we do not require % to be compactly supported in £ - since we only
work with sequences, {v.}, that are uniformly bounded in L?(2) this makes no difference.
Let i, and Vu, denote the extensions of u. and Vu, (by zero, say) onto the entire domain
2. Note that since X, is a set of measure 0 it is really quite immaterial how these extensions
are done. We will use n(y) to denote the characteristic function of Y*. The main theorem

concerning the convergence of the u, is thus

Theorem 1.1 The sequences @, and Vu, two-scale converge to u(z) and Vu(z)+n(y)Vyau(z, y),
respectively, where the pair (u,u,) € H(Q) x L}(Q; HY(Y*)) is as defined by (1.9) and
(1.10).

Proof: The weak form of the boundary value problem for u,, (1.4), together with the
estimate (1.6) immediately implies that the Vu, are uniformly bounded in L*(Q). The
estimate (1.5) now guarantees that the same holds for the ..

Having established these uniform bounds in L?(f), the rest of the argument proceeds
along the lines of the proof of Theorem 2.9 in [4]. Indeed, an argument identical to that

shows that (after possible extraction of subsequences) the sequences fi, and Vu, two-scale
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‘ converge to functions uo(z,y) € L*(Q x Y) and v(z,y) € L*( x Y), respectively. These

functions are of the form

uo(z,y) = u(z), (1.11)
v(z,y) = Vu(z)+n(y)V,ui(z,y), (1.12)

for some function u(z) € H'(Q) and u,(z,y) € L*(Q; Hi(Y*)). One small difference is that
since our functions u. do not vanish on 012, the limit function u(z) in this case is merely in
H'(Q), not in H}(Q).

With the representations (1.11) and (1.12) (and in particular knowing that u(z) € H*(Q)
and uy(z,y) € L*(; Hy(Y*)) ) it is not very difficult to find a homogenized system satisfied
by u and u;. Consider the weak form of the e-dependent problem given by equation (1.4),
and insert ¢(z) = ¢o(z) + ed1(z, z/¢) where ¢o € C°(N) and ¢; € C~(Q;CF(Y)). This
yields

/ﬂ Vu, - Vo dz + 6/9 Vue - (Vo )(z,z/€) dz + /ﬂ Vuc - (V1) (2, z/€) dz
= [ 9@)po(2)dS. +¢ [_g()u(z,2/)ds. .

Let now € — 0 and use the fact that i, and Vu, two-scale converge to u(z) and Vu(z) +

n(y)V,ui(z, y) respectively to obtain

[ [ (Fut Vi) (Vo + Vy) dy de = [, dugas... (1.13)

This represents a natural weak formulation of the following system of equations

2 (/Y‘(Vu + Vyul)dy) =0, inQ (1.14)
Vy (Vu+Vyyy) = 0 in QxY*, (1.15)
(/Y*(Vu + V,u,) dy) ‘ny, = g on 09, (1.16)
(Vu+V,uy)-n, = 0 on Qxo. (1.17)

From equation (1.15) we find that Ayu; = 0 in IR? \ I, since u does not depend on y. Also,

from equation (1.17) we have

o 0 d
’a"%(x’ y)!vEE = —-Vzu(-'b') Ny = - (a_::l(z)nll.l + 'a‘::(z)nvﬂ) ae. z€fl,
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" where n,,; denotes the kth component of the unit normal vector n,. Linearity now implies

that (modulo a function of z)
Ou Ou

Uy = 5;:)(1‘1-6—3:2)(2 ,

where the xi denote the periodic cell-functions defined earlier. It then follows that

Ou Ou
Vyu = EZVyXl + Eztzvuh .

When the above identity is substituted into (1.13) with ¢; = 0, then we obtain exactly the
weak form of the homogenized boundary value problem (1.9) for u. The fact that f,u dz =0
follows directly from the fact that [, %, dz = 0 and the fact that @, converge to u weakly in
L*(Q), (an immediate consequence of the two-scale convergence). This completes the outline
of the proof of the theorem. O

Remark: The statement of the corresponding convergence result following the lines of
Attouch and Murat would involve the introduction of the restriction-extension operator, Q°¢,
constructed in that paper. While this makes the statement of the theorem somewhat more
complicated (the reason we didn’t follow that approach here) — it also renders it slightly
more general. For the present problem we want to mention two consequénces of the slightly
stronger statement: 1. From the point of view of impedance imaging a slightly more
natural normalization (rather than f, u. dr = 0) would be f,qu, dS; = 0. The fact that
the corresponding homogenized solution, u, obeys the normalization Joqu dS: = 0 would
follow immediately from the facts that Q°u, = u. on 9 and that Q°u, converges to u weakly
in H'(). 2. Using the operator Q° it follows fairly immediately that the quadratic form
Ja. IVu* dz converges to [, 'y.IVulz dz. This is relevant for impedance imaging since the
boundary measurements in a certain sense represent measurements of exactly this quadratic

form. O

For our subsequent analysis of the properties of the matrix v it convenient to write it in

terms of a single cell-function. Let x denote the Y-periodic solution to

Ayx = 0 in R*\X, (1.18)
Ox
In = -1 on X.



" We recall that n is a constant vector on & (and as a consequence it also has the same direction
on the two “sides” of each crack). We shall pick n = (ny,n,) = (—sin @, cos @) where a is
the angle shown in Figure 1. Based on the above equation and equation (1.7) it is easy to
see that x; = n;x and x2 = nyY, so that

0 0
M = 1+m/y.£l'dy, '712=n2/),_a—y>'<:dya

dx Ox
Xy, q=1 / X gy .
n v Bys Yy Y2 + ng ¥ Bys y

Y21

Stated in a variational form yx is the minimizer of the expression
E(w) = /Y IV (w + neyi) | dy (1.19)

among all functions w € H}(Y™). Using the Y-periodicity of y it is not hard to check that

-‘?ldy = -nk/a[x](y) dy ,

v+ Oyi
where [x] denotes the jump across the crack o in the direction of the normal vector n (that
is, [X](z) = x+(z) — x-(z), with x4(z) denoting the limiting value of X as one approaches
z from the side which n points into and with x_(z) denoting the limiting value of x as one

approaches z from the side which n points away from). If we define

R= [ () ds,,
then the matrix v can be written

1— Rn? —Rnin, sin® o —sina cos a

q= =I-R . (1.20)

—Rnin, 1-— Rn? —sinacosa cosa

The matrix (other than the identity) appearing in the last expression simply represents the
projection onto the one-dimesional subspace of IR? spanned by n.

The quantity R also depends on the crack separation parameter s and the angle «, and
we signify this dependence by writing R(s, @). Fairly simple manipulations show that

p— — 2 = —
R(s,@) = [(dW)ds, = [, 1VxiPdy=1-E(x) (1.21)
where E(x) is the energy expression introduced in (1.19).

10



When s > 0 then the set R? \ T is connected and hence the periodic function y cannot
have Vx = —n. This implies that E(x) > 0. Since x is also not identically zero it now
follows from the last two expressions in (1.21) that 0 < R(s,a) < 1 for s > 0. Through the
expression (1.20) this just reaffirms the statement made earlier that - is positive definite for
s> 0.

When s = 0 but a # kr/4 the set IR? \ ¥ remains connected, and we conclude that
0 < R(0,a) < 1. The matrix v thus remains positive definite, and the proof of theorem
about homogenization convergence still carries through.

For s = 0 and a = kx4 the cell problem still makes sense and we get R(0,kwr/4) = 1.

The matrix -y therefore becomes degenerate. It is given by

10 1/2 1/2
A= and 7=

00 1/2 1/2
for k = 0 and k = 1 respectively. Formulas for other values of k follow by periodicity and
obvious symmetries. The previous proof of the homogenization theorem no longer carries
through in these cases. It does become very interesting to study the behaviour of v (or
equivalently of R(s,a)) as (s,a) approaches these points of degeneracy.
A very detailed study of the behaviour of R(s,a) is the focus of the following three

sections, and is at the same time the main result of this paper.
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" In this section we state our main results, which concern the behavious of R(s,a). We are
not interested in the case when the cracks become small relative to the cell (s — 1/2) rather
we are interested in the case when they reach (or nearly reach) from one side of the cell to
the other. We may thus without lack of generality suppose that 0 < s < 1 /4. By obvious
symmetries it suffices to consider angles in the interval 0 < a < 7/4. As noted in the last
section 0 < R(s,a) < 1 at all points (s, a) € [0,1/4] x [0,7/4]\ {(0,0), (0,7/4)}. Near such
points the behaviour of R is very regular. Our first result proves that R is Lipschitz there.
The proof of this fact is very simple, as seen in the following section. We are convinced that
R is indeed C' at these points — but this fact would be of no relevance for our primary
application: the study of the mechanism by which clusters of densely spaced microscopic

cracks may become electrostatically equivalent to a single macroscopic crack.
Theorem 2.1 Suppose that (s,a) — (so,20) with
0<s<1/4 and o€ |[0,7/4]\{(0,0), (0,7/4)} .
Then R(s,a) =+ R(so,a0) € (0,1), and furthermore one has the estimate
|R(s, @) = R(s0,@0)| < C(|s ~ so| + |a — a0} , (2.22)
with C independent of (s,a) but dependent on (so, a).

The second theorem, which is of most relevance for our primary application, concerns the
behaviour of R(s,a) near the singular points (0, kw/4) (at which points R takes the value
1).

Theorem 2.2 Suppose that 0 < s < 1/4 and a € [0,7/4] \ {(0,0), (0,7/4)}, and suppose
that (s,a) — (0,kom/4) for ko =0 or ko = 1. Then R(s,a) — 1, and furthermore it has the

asymplotic form

T 1
S A Y Py yosy ey 71y +°(1n(s+ Ia—kow/4l)) @)

where o(d) denotes a term which is asymptotically smaller than |5| as § — 0.

12



It is quite clear from this theorem that R is continuous at the singular points, but not
Holder continuous of any order. Let us briefly consider the asymptotic behaviour of the

matrix v for (s, a) close to one of the singular points, say (0,0). From (1.20) we get

1 0 1 0
= —_— 24
"o e +o () (224
2In(s+{af)

for (s, ) sufficiently close to (0,0). Similar formulas may be obtained corresponding to the
other singular points. Later, when we discuss the mechanism by which clusters of densely
spaced microscopic cracks may become equivalent to a single macroscopic crack, it is exactly

this asymptotic formula we shall depend upon.
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" 3 Proof of Theorem 2.1

For the proof of this theorem as well as Theorem 2.2 it is convenient to work with a period
cell which is a translate of Y’ = [0,1]? by a half unit in the y, direction. We define Q =
Y —(1/2,0), and we define

oa=Q\Zia

to replace Y*. To make the dependence on s and a explicit we have added these as indices.
The set Q; , is shown in Figure 3.

=8
| o
4
7~ ’
y=-1/2 Y,=s y=1/2
Figure 3

It is not difficult to see that when (so, ao) is in [0,1/4] x [0, v /4] \ {(0, 0), (0,7/4)} and when
(s, ) is in a neighborhood of (s0,0), then the the endpoints of any two succesive cracks
remain bounded away from each other. It is therefore not difficult to see that for any (s,a)
sufficiently close to (30, a0) € [0,1/4] x [0,7/4] \ {(0,0), (0,7/4)} it is possible to construct
a mapping ¥, , with the properties that

a) ¥,q is a W' diffeomorphism of Q onto Q, i.e., ¥, , along with its

inverse are one-to-one W mappings of Q onto Q.

b) ¥, maps Q;, ,, onto Q.

o) V,.(y)=y Vyedq.

d) There exists a constant C independent of (s, a) (but dependent on (80, @0)) such that

s = Hlwreogy < C(Is — sl + @ = aol) - (3.25)

14



To prove the estimate (2.22) we shall use the formula for R which results from the two
identities (1.19) and (1.21), namely

= — 1 2
R(s,a) 1- efgﬁg:ﬂ) /o:,a IV (w + nxye)|* dy

= 1- min /Q Vol dy (3.26)

v—n U €HL(Q3,a)
Let v,,,o, denote the minimizer of the last expression in (3.26), corresponding to the choice

of parameters (so, &), and define the function 9, o by

'53,01(\1’3,0:(?/)) = vso,ao(y) yY € Q:o.ao .

If we use the notation § = ¥, ,(y) for coordinates in Qo then this definition of 9, , leads

to the identities

L. 19tna0lw) dy (3.27)

.
40,20
1

— m () t ~  fx -
= Joy (5910l DUea ) DY, o4V (s 9

- /Q , 1VsBea(@)l 47 [1 +O(|s — so| + o — aol)]

where, due to the estimate (3.25), the term O(|s — so| + | — ap|) satisfies
0(1s — s0| + o = anl)] < C(ls — 50 + |a — 0]}

with a constant C that is independent of s and « (but dependent on sp and ag). Because
of the property c) of ¥,, immediately follows that @, , — niyx € H4(Q:,). Using the
variational definition (3.26) of R we now get

R(so,a0) = 1—-/ [ Vs.00)° dy
Q:0'°0
= 1= [ IVaua@F dg [1+0(ls - sol + |~ aul)|
T A ) (Tr
P Q:ﬂl v|* dy (Is = so| + | — aol)
— R(5,0) +O(|s — sol + o — au]) .
In summary this proves that

R(s0,00) < R(s,0) + C(|s — 30| + | — ) -

15



By completely similar means we can also prove that

R(s, ) < R(s0, ) + C(|s — 80| + | — a) ,

with C independent of s and a, but dependent on so and ap. A combination of these two
inequalities leads to the desired estimate.

16



" 4 Proof of Theorem 2.2 for horizontal cracks

In this section we give a proof of Theorem 2.2 in the case when the cracks are horizontal,

i.e., when a = 0. To be quite explicit we prove

Theorem 4.1 Suppose that s € (0,1/4], and suppose that s — 0. Then R(s,0) = 1 and

furthermore it has the asymptotic form

m 1
R(S, 0) =1 + m 4o (E) N (4.28)

where o(3) denotes a term which is asymptotically smaller than [6] as § — 0.

The proof of this theorem consists of three parts. 1) By use of symmetries we first
express R(s,0) in terms of a function u, which satisfies a boundary value problem where the
original, insulating crack is replaced by an infinitely conducting crack shrinking to zero. 2)
By a conformal transformation u, may be expressed in terms of the solution, v,, to a similar
problem in which the small crack is replaced by a small disk. 3) The third, and final step,
then consists in a careful analysis of the function v,, using polar coordinates and separation
of variables.

The geometric situation is as illustrated in Figure 4 below. The cracks are the darker
horizontal lines; a period cell is as seen at the center of this figure. As in section 3 we place
the coordinate system so that this particular translate is Q = [~1/2, —1 /2] x[0,1]. The lines
Li-L, in addition to being cell-boundaries, are also lines of symmetry as will be addressed
shortly.

Figure 4

17



" From (1.21) we know that R(s,0) is given by

R(s,0) = [ () dS,,

where o is a single crack, and x is the solution to

Ax = 0 on R\{cracks},
_3_}_(_ = -1 on the cracks.

on
with y — x(y) periodic, with period 1. If on the cracks we select the constant field n to be

n = (0,1), then the boundary condition on the cracks becomes the condition
Ix

+=— = —1 on the cracks,
Oya

and the jump [x] that appears in the above formula for R(s,0) is formed by taking a value
above the crack and subtracting the corresponding value below the crack. It is easy to see
that the solution x(y) is even with respect to the lines L; and L, and that after subtraction
of an appropriate constant it is odd with respect to L3 and L,. With this observation we may
replace the periodic boundary conditions on the cell Q, and instead characterize x (which

before was only unique up to a constant) as the unique solution to

Ax = 0 on Q\{cracks},

X = 0 on the top and bottom of Q,

__3_& = —1 on the cracks,

Oy,

ox C 1.

7— = 0 on the vertical sides of Q.
o

The domain Q\{cracks} is shown in Figure 5.
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M,

Figure 5
Again, it is easy to see that the solution x is odd with respect to the line M;. Let Q

denote the rectangle [—3, 7] x [},1] (the upper half of the period cell). We are then led to

the following characterization of x

Ax = 0 inQ,

x = 0 ony =1,

X = 0 onyp=1, |yl <s,
—36_;—2 = —-1 onyr=14,s< |yl <
% = 0 on thesides y; =+3 .

Our original formula for R(s,0) translates into

R(s0) = (@S, =2 x(w 3w, (429)

due to the fact that x is odd with respect to the line M;. Define the function v(z) =

<lmi<1/2

x(z) + (yz — 3); the function v satisfies

Av = 0 inQ,
1
= - = 1,

v 5 o0y

v = 0 ony=1,|ul<s,
v
a_y'; = 0 0ny2=%,3<|yl|<%)
zv_ = 0 on the sides y; = :I:%.
Oy
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Also,

1 1
2 =) dyy =2 / v(ys, =) dy, .
/s<lm|<1/2X(yl 2) h <l l<1/2 (yl’Z) Y1

Let n denote the unit outward normal to Q. Integration by parts shows that

0= /Q(y2 - 5) Avdy - ‘/';(o)(!h - § a—nng —/8(é)va—(y2 — E)dSy
12 Qo 1
N -3 2)d
2 /1/2 ay (y11 1) dyl + ,/<|y1|<1/2 v(yl, 2) 0N ,
from which we conclude that
1 1/2 Jy

2 vg)dn=1-[  ==(u,1)dy . 430
/:<hnl<1/2 vy 2) v /_1/2 Oy, (v1,1) dyy (4.30)

Let P C Q denote the rectangle P = [-1/2,1/2]x[3/4, 1], with unit outward normal denoted
by n. Integration by parts shows that

3 3.0v
O—L(yz-z)A”dy = B(P)(yz“z)b-;ds /8(15) on - (y2 — -)dS

1/2 Jv
4/1/2 Bz (yl,l)dyl ——+/ ”(yl, )dyl,

from which we conclude that
/2 gov
1- / By oD i =4 / v(yl,-)dyl —1. (4.31)
A combination of (4.29), (4.30) and (4.31) now gives
R(s,0) =2 /

1 1/2 3

a<lunl<1/2 v(y1, 5) dy, = 4[_1/2 v(y1, Z) dyp —1 . (4.32)
It is not essential here that we have chosen the value 3/4, but for our later applications it is
convenient that the last integral be taken on a line with y; = ¢, with ¢ strictly between 1/2
and 1.

Let u, denote the function obtained by extending v (defined on Q) as an even function
across the line y, = 1/2. Let & denote the set {|y1| < s, y = 1/2,} in Q. The function u,
is defined on @, and due to the fact that 58;’-; = 0 along the two line segments {s < y; <

1/2, y2 =1/2} and {~1/2 < y1 < s, y; = 1/2}, we find that u, satisfies
Au, = 0 inQ\a,
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u, = 3 ony; =0 and y, =1,
. 1
u, = 0 ond={lyl<s, 2= -2-} , (4.33)
Ous = 0 on the sides y; = +1.

o
We note that the strong version of the maximum principle (Hopf’s Lemma) asserts that
0v/Bys(y1,1/2) > 0 for |y1| < s, ya = 1/2; the quantity du,/dy, will thus have a jump
across &, so that u, will not be harmonic across &. The set Q \ & is pictured in Figure 6

below:

— y2’1

PR yzzO

y=-12 y=1/2
Figure 6

At this point we have completed the first step of the proof of Theorem 4.1, in that we

have verified

Lemma 4.1 Let u, denote the solution to the boundary value problem (4.83) on Q\&. Then
1/2 3
R(s,0) = 4/_1/2 us(y1, Z) dy, —1 .

We now proceed with the second step, to calculate the quantity f_l_ﬁg u,(y1,3) dy; by
means of a conformal mapping.

Let us identify R? with € by choosing complex coordinates z = y1 + tys; the crack &
then corresponds to the the line segment between z = —s + jiand z = s+ Li. We will
conformally map the region @ \ & to a new region in which the crack appears as a circular
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hole. This geometry allows us to use polar coordinates and separation of variables to examine
the behavior of the correponding electrostatic potential. |

Let ¢1(z) = £%; this conformal map takes € \ [—s,s] to € \ {(—o0,0] U {1}} and the
real interval (—s, 3) to the negative real axis. Define ¢;(2z) = +/z with the branch cut along
the negative real axis. This maps the set € \ {(—o0,0] U {1}} to the set {z€C :Re(z) >
0,z # 1}, the right half plane minus the point z = 1. Finally, define #a(2z) = 1sit2, which
maps this set to the ezterior of the closed ball Bo(s/2). Let ¢,(z) = ¢a(¢hs(s(z — 30)) + 134
Returning to real coordinates the conformal mapping &.(+) maps IR? \ & conformally onto
R2 \ B(O'%)(s/2). It’s easy to check that ¢;, ¢, and ¢3 are each injective, and so each is
invertible on its range. The mapping &,(-) is thus invertible on its range. It’s also easy to
check that ¢,(y) — y as s — 0 for y uniformly away from the point (0,3), i.e., ¢, approaches
the identity map away from the point (0, 1).

Let 'y denote the union of the top and bottom of Q and let I'; denote the union of the
vertical sides of Q. Define I';, = ¢,(I), i = 1,2 and let D, denote the bounded domain
enclosed by I'y ,UT';,,. With this definition we get ¢,(Q\&) = D,\ B, %)(3/2). The function,
v,, given by v,(z) = u,(¢;'(z)) therefore satisfies the boundary value problem

Av, = 0 in D, \ B(o'%)(3/2) y
1

v, = 3 only,,
dv,
= Oonrl,, , (4.34)

Vy, = 0 on aB(o'%)(3/2) .

In order to study the asymptotics of v, (and therefore of ,) it is convenient to introduce a

particular Green’s function. For any = € D, let M,(z,y) denote the solution to

AyMl(x)y) = ‘Sz yEDa,
M'(x)y) =0 yerl,sa

oM,

o (®y) = 0 yeTy,. (4.35)
My

Later in this section we prove that
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Lemma 4.2 Let v, denote the solution to (4.84), and let M, denote the Green’s function
defined by (4.35). Then

=1 Ly - ~3/2
va(y) = 5 = M.((0, 5), )1 + O((ln 5)*(y)) ,
where for any fized € > 0 the term O((In s)~*/*(y)) satisfies
10((ln 8)=*?)(y)| < C|Ins|~*? ,
uniformly iny € D, \ B, i.)(ﬁo), for s sufficiently small.

Before we give a proof of this lemma we briefly show how, in combination with Lemma
4.1, this immediately leads to a
Proof of Theorem 4.1

Due to the definition of v, and Lemma 4.2, the function u, has the form

w(v) = 5 = M(0,3) 4.6+ Ol 2)/2(y)) (4.36)
where for any fixed € > 0 the term O((In s)~3/%(y)) satifies
|0((ln 5)**)(y)] < C|1ns|™2,

uniformly in y € @\ B, %)(eo), for s sufficiently small. It is quite easy to check that the
function M,((0, }), $.(y)) is bounded on the line segment {y = (y1y92) : =1/2 < 41 <
1/2, y, = 3/4} uniformly in s. It is equally easy to see that

M0, 3),4,6)) — Mo((0,3),5) 25 5 =0

on the same line segment {y = (y1,¥2) : —1/2 < y1 < 1/2, y, = 3/4}. Combining this with
Lemma 4.1 and (4.36) we get that

1/2 3
Rs,0) = 4wy, 5)dy —1

-1/2 Us
— 4 [1/2 1 3 o
= 1= [ MO, N 40 (w3
4 (12 1 3 )
= 1- E’,/_l/z Mo((0, §)a (1, Z)) dy, + o (E)
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Integration by parts yields

i

L= [ AM(©,5).)dy

= / i 83 Mo((O ) (¥, ¥2))lya=1 dun "/ L By M"((O’z) (s, 32))ln=0 s

2/ Mo((O ) (yl,yz))lyg-l dy, ,

]

where we have used the symmetry of Mo((0, }),y) about y, = 1. Let P C Q denote the

rectangle P = {(y1,2) : —-% <y < % s % < y2 < 1}. Integration by parts also yields
1 3
0 = [AM((0,5))wm-F)dy
17 0 1 3 1 3
= Z[.g- @MO((O’ 5) (Y1,2)) a1 dtn +/_% Mo((0, 5): (y1, 7)) dyr -
A combination of these two formulas gives
5 1 3 1
[, M6l0,3), 6o ) i = =
which after insertion into the last expression of (4.37) yields

1
R(s,0) =1+ 2ln +0(lns) )

exactly as stated in Theorem 4.1. O

O

Figure 7
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It now only remains to provide a proof of Lemma 4.2. This is the focus of the remainder of
this section. We use the notation yo for the point yo = (0,3). The domain D, \ B,,(s/2),
with exterior boundary parts I'y, and I';, is schematically shown in Figure 7 above. As
before v, denotes the solution to the boundary value problem (4.34). We shall need a bound
of the L%-norm of the gradient of v,.

Lemma 4.3 For s sufficiently small one has the estimate

Voufdy < — T
Joensrs V24 S Tty

Proof: Let w,(y) be defined by

outside By, (1/s/2)
—'—1'5(2;'7[2-’% for s/2 <r < y/s/2

where r = |y — yo|. It is simple to check that, for sufficiently small s, w,(y) satisfies w, €
HY(D, \ By (s/2)), w, = 0 on 8B,(s/2), and w, = 3 on I'y,. The function v,, being the

solution to the boundary value problem (4.34), is variationally characterized as the minimizer

RO fe=

w,(y) =

of the expression

Vu|*d
‘/Da\Bvo (s/2) I I Y
in the set H'(D, \ By,(s/2)) N {v=10o0n dB,(s/2), v=1%onT;,}. As a consequence
Vo> dy < Vuw,|*dy . 4.38
/D.\B,,o(a/2) I I y= L.\Bw(3/2) I I y ( )

It is an easy computation to show that

2

ow,
Jor

|Vw,|2 dy

= 2 /
Byo(\/3/2)\Byqy (s/2)
2 /\/0/2 dr
|1n(s/2)|? Jes2 r
b

Tin(s/2)] Gl (4.39)

A combination of the inequality (4.38) with the formula (4.39) establishes the lemma. O

/D-\Byo (s/2)

We shall also need some results concerning the behaviour of v, on the boundary of
By, (s/2), as s = 0.
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" Lemma 4.4 The Jollowing estimates hold for s sufficiently small:

/83”(‘,2) 595 = —-+O0(Ilns|™?), and
Jdv, C
< .
'/BBUO(O/” 37’ dS - IID.SI

Proof: Since I';, is non-trivial, we can use a Poincaré inequality to assert that there exists

a constant C such that
2 < 2
[ rasc, wara

for any H'(D,)-function, w, which vanishes on I'y,. Since I'y,, varies smoothly with s it is
not difficult to see that the constant C' may indeed be chosen independently of s. Let o,
denote the function defined by %, = v, — L in D, \ B,,(s/2) and &, = —3 on By (s/2). The
function ¥, is in H*(D,) (since v, = 0 on 0B,,(3)), it also vanishes on I'1,,, so that the above

estimate yields
v~a z d < C/ C 55 2 d
~/D, l I Y= . l I Y,

for some constant C, independent of s. For the remainder of the proof of this lemma it
is convenient to introduce the notation s’ = /2. Select a fixed 8o < 1 so small that

By,(s0) C D, for all s sufficiently close to zero. Since V#, = 0 on By, (s"), we obtain

1, 1
v, — ~Pdy < / v —=[2d g/ 5.2 d
/BW(M)\BM,,)I Py < sl s [l dy

< cf vaPay=c oo VoY, (440)
] s\Dyg (&

with C independent of s. The point is that the L? norm of v, — 7 on any domain B,, (so) \
By (s') can be bounded in terms of the L? norm of Vv, on D, \ By, ('), which is in turn
bounded by Tz according Lemma 4.3.

The next step is to express the harmonic function %, = v, — % in an infinite series on the
domain By, (so) \ By, (). In polar coordinates around yo

y(r,0) = (¢ — %) +dglnr + ) " (cir* + dir ) cos kb + > &k + dir*)sin ko
k=1 =1

where the —7 has been explicitly accounted for in the constant term 5 — 1. The coefficients

depend on s, as indicated by the superscripts. The condition &, = —-;- on the circle r = s'(=
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s/2) forces

s %
G = g
di = —ci(s)* and df = —-&(s)* for k>0.

The expansion for 7, then becomes

. , 1 Inr o _
B,(r, 0) = (Co -3- cl‘)m) + ?_: c(rk — (s")*r=*) cos k8
=1

+ Y &(@* - (s)*r*)sin ko. (4.41)
k=1

Using this representation we may now integrate |5,|? over By, (s0) \ By, (s') to obtain

2% pag
5'2(1 = / / 6, r,a 2Td1'd0
‘/;W(M)\Byo(l') | I Y o o I ( )I y
s '] 1 o 1111' 2
= 27 /" (Co — 5~ COE-S—,) rdr (4.42)
= 80
+ 7 () + (&) /, (r* — (8')*r~*)2 r dr

k=1
Here we have used that the sines and cosines form an orthogonal basis in L%(0,27). Upon
deletion of the last terms in equation (4.42) it is clear that

27r/'o s_1_lor 2rdr</ |8,]* d
s “ 2 colDSl - Byo(so)\B g Y.

vo(s’)

The estimate (4.40) and Lemma 4.3 now show that

20 1 Inr\? nC
2/ s _Z e BT < Vo, [P dy < —~ .
T, (CO 2 lnsl) rdr<C D.\B,o(s')l v y—'|1n8'|

A little rearrangement of the leftmost integral in the last inequality yields

%0 1 Inr 1lnr]? C
‘__ ————— — e < .
L [(co 2) (1 lns’) 21113’] rdr < 2|1n 8’|

2
As s approaches zero the integral [ [.:—, -'h':—:,—] rdr is negligible with respect to Eﬂ%ﬂ and as a

consequence we conclude that

L [(“5 -3) (1 - Bl%)]z rdr < 21153'1 '
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