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Singular solutions to a nonlinear elliptic boundary
value problem originating from corrosion modeling.

Kurt Bryan* and Michael Vogelius'

Abstract

We consider a nonlinear elliptic boundary value problem on a planar
domain. The exponential type nonlinearity in the boundary condition is
one that frequently appears in the modeling of electrochemical systems. For
the case of a disk we construct a family of exact solutions that exhibit
limiting logarithmic singularities at certain points on the boundary. Based
on these solutions we develop two criteria that we believe predict the possible -
locations of the boundary singularities on quite general domains.

1 Introduction

Let Q be a bounded, simply connected, smooth domain in R?. The ultimate goal
of the work we describe in this paper is to understand the behaviour of solutions
to the nonlinear elliptic boundary value problem

Au = 0 in Q,

g—g = Af(u)+g on 00, (1)
with f(u) = €2 — e"*/2, and A some real number. This problem, or slightly
more complicated variations thereof, show up quite frequently in connection with
modeling of electrochemical systems, consisting of an electrolyte and an adjoin-
ing metal surface. The surface may be anodic or cathodic, correponding to a
corrosion- or a deposition process, respectively. Models using this type of expo-
nential boundary conditions are associated with the names of Butler and Volmer.
For an in-depth discussion of the physical modeling, the significance of A (and
other physical parameters that enter into more complicated variations) we refer
the reader to books such as [2] and [3]. We also refer to the introduction of [4],
where there is a somewhat shorter discussion of some of these issues.
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In the final section of this paper we apply these same two criteria to general
domains (by means of a conformal mapping) and (for the case of two singularities)
we provide a simple characterization of the possible locations of the limiting
singularities.

One of the reasons we are quite interested in the asymptotic behaviour of the
solutions to (1) for A small but positive, is that we think this behaviour may help
explain different kinds of surface instabilities observed in real electrochemical
systems. Due to the presence of the singularities, it is also very possible that
overdetermined measurements (Cauchy data) from such solutions provide good
information about the geometry of an inaccessible corroding surface.

2 Numerical approximation of the solution; qualita-
tive behavior

We begin by numerically solving the boundary value problem of interest, in order
to highlight some of the qualitative features of the solutions. We restrict our
attention to the unit disk D in R? and consider

Au = 0 in D,
gﬁ- = Af(u)+g, on 8D, (3)

where f(u) = e¥/? — ¢~%/2,
‘We parameterize 0D as (cos(8), sin(6)) for 0 < 8 < 2x. For simplicity let us
consider solutions to (3) that are even with respect to the z—axis, i.e., we take g

to be given by a cosine series, and we assume that the suitably smooth, harmonic
function u may be expanded as

u(r,6) = Zajvj cos(j60)
3=0

for some choice of coefficients ag. By inserting this expansion into the boundary
condition (3) (note that & = £) we obtain

o0 o0
>_jajcos(j6) = Af (Z aj C°S(:i9)) +9(0), (4)
i=0 =0
an equation which should be satisfied identically in 6. From this we may attempt
to recover appropriate coefficients a;.

A natural strategy is to choose a fixed n, truncate the infinite sum at j = n
and then project both sides of equation (4) onto the span of {cos(k8)}|7_, by
integrating against cos(k6) for k = 0 to n. This yields

n

Feran = 2 /Ozvr f (Z a; cos(jO)) cos(k8) d8 + ciby (5)

§=0
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. As a specific example consider the case in which g(6) = cos(f). One can
compute ||Vulls = /7/|1 — A| for A < 0 and for non-integral A > 0. If A =1
then we have no solution, while if A = k for an integer & > 1 then we have
infinitely many solutions, and any energy is attainable. For this problem a plot
similar to Figure 1 can be constructed. Figure 2 shows ||Vu||z versus A for the
linearized problem, in which the vertical lines represent the fact that by adding in
a suitable multiple of 7% cos(kf) one can obtain any energy. For \ sufficiently far
from zero (when u is small) the behavior of the nonlinear problem is qualitatively
quite similar to that of the linearized problem. Note that Figures 1 and 2 are
quite similar; in Figure 1 the vertical lines arising from the eigenvalues for the
linearized problem have merely been distorted.

As mentioned above, as A approaches zero from the right the solutions along
all growing branches develop singularities on 8D. Figure 3 below shows a solution
with boundary data g(8) = cos(6) for A = 1.0 x 1075 on the n = 2 branch. Here
four singularities develop at 8 = 0,#n/2,7,37/2. We find in general that as
A > 0 approaches zero the solution on the nth branch develops 2n uniformly
spaced singularities of alternating sign on dD. The singularities appear to be
logarithmic, and this behavior does not seem to depend on g. The exact behavior
of the solutions in the special case that g = 0 is examined in the next section.



In what follows we make use of the identities
Hir:(—) even(1 + /”'2 —2pcos(6—6k)) = #211 — 2u™ cos(nf) + 1
(M
i oaa(1+ 12 — 2pcos(6 — 6k)) = p™™ +2u" cos(nd) + 1 .
These can be proved by noting that in each equation the left and right sides

are polynomials in p of degree 2n, with the same roots and the same leading
coefficients. We will also make use of

ZZ”_ . n(pz"—l)
k=0,even 1+p7——2pcos(9 0,) T (pf-1)(u?—2u" cos(nf)+1)
(8)
2n~1 - n(u?"-1)
k=1,0dd 1+p2—2pcos(0—0k) = W=Dy 24 cos(nd)+1) -

These can be proved by taking the logarithm of both sides of the respective
product identities (7), then differentiating with respect to x and rearranging.
We begin by computing %—”3 and Af(vy) explicitly. First,

vy, = = 92 zi—:l(_l)k T — UTk
oz = (z — pzE)? + (y — pyx)?
2n-1

. k - BTk
- ZCZ( 1) 1+ p? —2,ucos(0—0k)

where Hk = kn/n and (z,y) lies at angle §. Here we use the facts that z2 + 32 =
x? + y2 = 1 and zz + yyx = cos(@ — 6k). A similar computation can be made
for —5} and since n = (z, y) on the unit circle we obtain

2n—-1

Ouy, Bv,\ Bv,\ _ k — pcos(8 — 6x)
n "oz TY 8y 2 Z -1) 1+u — 2ucos(8 — 6x)

= 255 -1 (2 Sl |

= 2(1 + p? — 2p cos(6 — 6))
) 2n-—-1 X 1

= l-p ),;0(_ ) 1+ u? — 2ucos(6 — 6;) )

We can make use of the identities (8) in equation (9) to find that
vy, —4enu™(u?™ — 1) cos(nf)

N (u2™ — 2u™ cos(nf) + 1)(/.t2n + 2u" cos(nf) + 1)’ (10)

Now consider the quantity Af(vy). Using f(v) = e¥/2 — e~%/2 as well as
(z — px)? + (y — pyk)? = 1 + p? ~ 2pcos(8 — 6x) we find that

n— 2
f('U)\) = (H%—O even(:l + ﬂ’z - 2p COS(9 - 0k))>0/
Hi’; odd(1 + p2 — 2pcos(0 — 6x))

i (Hi’;z}odd(l + 1% — 2ucos(6 — 61)) )°’ ’
P even(1 + 142 — 2p1cos(6 — 6))

(11)
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which is quite similar to Figure 1. Note that in the case g = 0 we have a solution
vy = 0 for all ), so that the X axis is the branch which extends to the left half
plane.

We can determine the precise asymptotic behavior of the integral in equation
(14) as X approaches zero. Let N, = (0D) N (Ui, Bc(px)) (where B(p) is an
open disk of radius € around p) denote a neighborhood of the px in 8D and
set D, = 3D \ N, so 9D, is a subset of 8D which excludes a small interval
around each pg. It’s easy to see that as A approaches zero the function vy remains
uniformly bounded on 8D, and equation (10) makes it clear that %% approaches
zero uniformly on 0D, (since the denominator on the right in (10) is bounded
away from zero on 9D, and 1 — 1 as A — 0%). As a consequence, [j D. v,\%”—“‘ doz
approaches 0 as A approaches 0 (for any fixed ¢.)

From this observation and the symmetry of the solution Wlth respect to the
2n poles, we see that the asymptotic behavior of the integral on the right in
equation (14) will be the same as that of

n pn—2 0)+1
on /ﬁ ~16nu™ (4" — 1) cos(nf) In (p2“+2z" 232&311) p
—e (U2 — 2um cos(nf) + 1)(p2" + 2u” cos(nd) + 1)

for fixed small ¢, in which the integral above is the contribution of the pole near
(1,0). Making the approximations p"® = 1+ O(\), u?® + 2u™cos(nf) + 1 =



and

(1 — @)% + 2a(1 — cos(8 - 6p)) 1= B)? +26(1 — cos(d — 6;))
(1- )%+ 203(1 — cos(d ~ 6)) (1= a)? +2a(l — cos( — 6p)) ~

As a consequence

Af(va) = A

ov), _
on Af(va) = A

2(1—a?)/A+ (1~ B)? +26{1 — cos(6 — 6;))
(1 —a)?+2a(1 — cos(@ — 6p))
2(1 = 8%)/2+ (1 - a)? + 2a(1 — cos(6 — 6y))
(1-B8)2+2B(1 — cos(8 — 6,)) ’
Consider now the first term of this residual. A necessary and sufficient condi-

tion that this first term be uniformly bounded (in # and \) is that the numerator
of the fraction vanishes at (A, 8) = (0, 6), i.e.,

(17)

-

—4c/(0) + 2(1 — cos(fp — 6,)) =0 . (18)

To see this, note that the denominator of this fraction is bounded from below by
¢ [(1 — @)% + (8 — 6)?]. Furthermore note that if (18) is satisfied then o/(0) 3 0,
and thus

C(A+18 = o))
c[(1—a)?+ (60— 60)?%

X2+ 20 = o]
< Caove—ar<C -

|First term of residual] <

Similarly the second term of the residual (17) is uniformly bounded if and only if
—44'(0) + 2(1 — cos(fp — 61)) =0 .

In summary, the entire residual %";} — Af(v)) is uniformly bounded in 6 and )\
exactly when

o/(0) = B(0) = %(1 —~ cos(fo— 6)) .

We now proceed further and ask the question: “exactly when is the residual
(17) bounded by CA uniformly in # 7 The first term of (17) is clearly bounded
by CA uniformly in 6, exactly when the numerator (in addition to vanishing)
has first derivatives with respect to A and 6 that vanish at (X,6) = (0,6,). The
corresponding constraints are

—2[(a’(0))* + "(0)] + 26'(0)(1 — cos(fy — 6;)) =0 ,

and
2sin(90 - 91) =0.

Similarly the second term of (17) is bounded by C'\ uniformly in 8, exactly when
~2[(8'(0))* + B"(0)] + 2¢/(0)(1 — cos(8p — 61)) =0,

11



and
A/ F(vy) do =4x[1 - cos(p — 6)] <~—;1——— + ———1—) +0o(1) , (21)
aD o'(0) ~ B'(0)
into (19). We now proceed to verify the identities (20) and (21). To that end

= ——u) do (22)

2 1— a2 1— ﬂ2
= 2/0 [(1 — )2+ 20c(1 — cos(8 — 60)) (1 —B)% + 2B(1 — cos(6 — 01))}
X [log[(l — a)? + 2a(1 — cos(f — 6p))]
—log[(1 — B8)% + 2B(1 - cos(d — 61))]| d6 .

Let us first calculate

2 1-a? ,
/o (1= a)? + 2a(l —cos(d — g)) \OBl(1 ) +2a(1—cos(6—60)) 6 = I + IT
where
1-o? \
= log[(1 — o) + 2a(1 — cos(8 — 6))] db ,

5 (1 — a)?+ 2a(1 — cos(8 — o))
with S = (0,27) N {1 — cos(8 — 6p) > A/4}, and

1-¢o?

= s (1 — a)? + 2a(1 — cos(6 — 6p)) log[(1 - a)

2 + 2a(1 — cos(6 — 6p))] df ,

with Sy = (0,27) N {1 — cos(6 — 6p) < A}/4}. For 8 € S; we immediately get

1- 0!2 < CA3/4
(1-a)?+2a(1 —cos(6—6p))| — )
Therefore
2
1] < CA¥/4 /0 |log[(1 — @)? + 2a(1 — cos(8 — 6;))]| df < CA3/4 . (23)

We may without loss of generality suppose that the polar coordinate system has
been chosen so that 6y and 6, are both different from 0 (and 27). For sufficiently
small A the set Sz = (0,2m) N {1 — cos(f — fp) < A1/} then splits into two equal
parts S5 and S7: one in which 6y < 6 and one in which 6 < 6. The contribution
to the integral is the same from the two sets. We introduce the new variable of
integration

_ v/2a(1 — cos(8 — 65))
§= a—1

b

13



in which form we recognize part of the integral as a double layer potential with
density log |(z,y) — B(z1, y1)|? evaluated at the point a(zo, o) (which lies outside
D). Since (zo, yo0) # (x1, ¥1) it now follows immediately from the “jump relations”
for double layer potentials that the term (26) converges to

/ [2((:1:7 y) - (‘TO’ yO)) : n(z,y)
8D |(z,y) — (0, y0)|?
—2m log (o, yo) — (z1,31)|?, (27)

as A — 0%*. Since 8D is the unit circle it is easy to see that

- 1{log|(z,y) — (z1.91)|* do

2((z,y) — (%0, %)) *Nzy) _ )
@) —(owpE  ~ L (@vedD.

Inserting this into (27) we conclude that the term (26) converges to

- —2mlog (2o, %0) — (z1,9)I? , (28)

as A — 0%. By the exact same argument we get that
/2“ L-p° log[(1 — @)? + 2a(1 — cos(d — 6;))] df
o (1—PB)2+2B(1— cos(6 — 61)) 0 ’
converges to
—2m log|(z0,30) — (z1,1)|? , (29)
as A — 0%. Substituting (24), (25), (28) and (29) into (22) we arrive at
% o %%‘-v,\ do = -16wlog) — 8rloga’(0) — 8xlog 5 (0)

16 el log(s® +1) d
— /0 o og(s“ +1) ds
+81rlog|(zo,yo)—(:c1,y1)|2 + 0(1) )

which is exactly the same as (20).
It only remains to verify (21). We calculate

A / Floy)do = 2X / (€2 4 e/2) do
8D aD

B 2m (1- a)2 + 2a(1 — cos(8 — 6y))
= 2’\f0 (1-B)2+28(1— cos(8 — 6y))
2r (1 - B)% + 26(1 — cos(f — 61))

+2’\/0 (1 —a)?+2a(l — cos(6 — 9(1)))

Upon replacing 1—8% = —24'(0)A+O(A2) by 2), and log[(1—a)?+2a(1—cos(6—
6o))] by (1—a)2+20(1 — cos(6 — 6p)) we may use the exact same procedure that
was used to compute the formula (29) for

do

dg . (30)

2w 1 —ﬂz
/0 (1-06)2+2B(1 — cos(8 — 61)) log{(1 ~ @)? +2a(1 — cos(6 — 6o))] 46,

15



5 Location of singularities on arbitrary domains

Consider now the boundary value problem

Au = 0 in Q,
O Af(u)+g on o9 (33)
I = u)+g on ,

on a smooth, bounded, simply connected domain  C R%. We identify R? with
the complex plane C, by identifying the point (z,y) with the complex number
z = = +1y. According to Riemann’s Mapping Theorem there exists an analytic
function ®(-), such that the mapping z — ®(z) maps 2 one to one onto the unit
disk, D. From elliptic regularity theory we know that ® has a smooth extention
to 2, and we furthermore know that the extension of |d—3§ﬂ| = |det[D®(x, y)]|/2
does not vanish on ). The function w = u o ®~! now satisfies

Aw = 0 in D,
B2 — Afw)+g on 0D, (34)
on
where h denotes the (boundary) function h(-) = |det[D®(®~1(-)]|'/2. We may
think of h as a function of the angular variable 8 : h(8) = h(e'?).
We believe that singularities will develop in w at specific points on 8D, as A >
0 approaches 0. We also believe that these singularities and their locations will
mimic those that develop in one of the non-trivial solutions to the homogeneous
boundary value problem

Av = 0 in D,

g:’l = Af(v) on 8D. (35)
In the previous section we identified two criteria that correctly selected the possi-
ble locations of the limiting singularities for solutions to (35) in the case when Q
was the unit disk, i.e., when h(6) = 1. We shall now calculate what these criteria
predict concerning the singularity locations in the case when h is not identically
1 (and two singularities develop). Fortunately the two predictions coincide — and
we do conjecture that these locations are those which will appear in solutions to
(35) (and (34)) in the limit as A — 0% (when two singularities develop). By the
conformal mapping ®~! these locations get carried to the (conjectured) locations
for the limiting singularities of solutions to the problem (33). We note that even
though we here only consider the case of two singularities, similar calculations
could be carried out for any even number of singularities.
With vy given by the ansatz (16) we calculate

A2 Af(wn)

17



It is now very simple to calculate that the stationarity conditions of the “renor-
malized energy” E*(0, 6y, c/(0), 3'(0)) with respect to a’(0), #'(0), 6p and 6; (in
that order) amount to exactly the conditions (36) and (38). The equations (38)
determine the locations of the limiting singularities; given these locations the
equations (36) then determine o’(0) and 3'(0). Just as we experienced in the last
section o”’(0) and 3”(0) are not determined by stationarity of the “renormalized
energy”.

Observation 3
As a consequence of the calculations carried out above and in the previous
section, we conjecture that in the case when two limiting singularities develop
in a solution to (33), then these singularities will be located at points (zo,yo) =
®~1(cos(bp), sin(fp)) and (z1,11) = ®~(cos(61),sin(6,)), where by and 0, satisfy
h’(eo) _ Sin(ao b 01) h’(01)

h(6o) 1—cos(fp—61) h(6y) (40)

We illustrate the assertion of this conjecture with a simple numerical example.

Example

Let Q, be the image of the unit disk under the mapping z — exp(az) for
0 < a < 7. As the mapping &, :, — D we may thus take ®,(z) = %log(z).
Simple calculations give that

jde| 1
dz|  alz|’
1

h(8) = h(cos 8 + isinf) =

—le (—acos8)
a [exp(acosd + iasinf)|  a P '

and
F' () = sinfexp(—acosf) .

It follows immediately from (40) that the conjectured limiting singularity loca-
tions correspond to angles 6y and 6, that satisfy
sin(90 - 91)

asinfp = T—cos(@—61) —asinb; . (41)

We note that if (g, 6;) satisfies these equations, so does (6;,8y) (in terms of
solutions to (35) this just reflects the fact that if v is a solution, so is —v). Let us
therefore, to eliminate this trivial symmetry, for the moment adopt the convention
that 0 < 6y < 6) < 2. The equations (41) have the solutions

(6o,601) = (0,7) and (42)
sin(260)

(00,01) where asmﬁo = m‘z—g{s

and 0, =2m—6y. (43)
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