228 research outputs found
Studying the Transistor Using Wireless Epistemologies
The refinement of 802.11b is an essential prob- lem. Given the current status of autonomous theory, experts dubiously desire the simulation of the producer-consumer problem. We propose an approach for the visualization of sensor networks, which we call BREWIS
Structural dynamics of incommensurate charge-density waves tracked by ultrafast low-energy electron diffraction
We study the non-equilibrium structural dynamics of the incommensurate and nearly commensurate charge-density wave (CDW) phases in 1T-TaS2. Employing ultrafast low-energy electron diffraction with 1 ps temporal resolution, we investigate the ultrafast quench and recovery of the CDW-coupled periodic lattice distortion (PLD). Sequential structural relaxation processes are observed by tracking the intensities of main lattice as well as satellite diffraction peaks and the diffuse scattering background. Comparing distinct groups of diffraction peaks, we disentangle the ultrafast quench of the PLD amplitude from phonon-related reductions of the diffraction intensity. Fluence-dependent relaxation cycles reveal a long-lived partial suppression of the order parameter for up to 60 ps, far outlasting the initial amplitude recovery and electron-phonon scattering times. This delayed return to a quasi-thermal level is controlled by lattice thermalization and coincides with the population of zone-center acoustic modes, as evidenced by a structured diffuse background. The long-lived non-equilibrium order parameter suppression suggests hot populations of CDW-coupled lattice modes. Finally, a broadening of the superlattice peaks is observed at high fluences, pointing to a non-linear generation of phase fluctuation
A hydrodynamically optimized nano-electrospray ionization source and vacuum interface
The coupling of atmospheric pressure ionization (API) sources like electrospray ionization (ESI) to vacuum based applications like mass spectrometry (MS) or ion beam deposition (IBD) is done by differential pumping, starting with a capillary or pinhole inlet. Because of its low ion transfer efficiency the inlet represents a major bottleneck for these applications. Here we present a nano-ESI vacuum interface optimized to exploit the hydrodynamic drag of the background gas for collimation and the reduction of space charge repulsion. Up to a space charge limit of 40 nA we observe 100% current transmission through a capillary with an inlet and show by MS and IBD experiments that the transmitted ion beams are well defined and free of additional contamination compared to a conventional interface. Based on computational fluid dynamics modelling and ion transport simulations, we show how the specific shape enhances the collimation of the ion cloud. Mass selected ion currents in the nanoampere range available further downstream in high vacuum open many perspectives for the efficient use of electrospray ion beam deposition (ES-IBD) as a surface coating method
Long-term follow-up of high-dose chemotherapy with autologous stem-cell transplantation and response-adapted whole-brain radiotherapy for newly diagnosed primary CNS lymphoma: results of the multicenter Ostdeutsche Studiengruppe Hämatologie und Onkologie OSHO-53 phase II study
Background We previously reported the results of a phase II study for patients with newly diagnosed primary central nervous system lymphoma treated with autologous peripheral blood stem-cell transplantation (aPBSCT) and response-adapted whole-brain radiotherapy (WBRT). Now, we update the initial results. Patients and methods From 1999 to 2004, 23 patients received high-dose methotrexate. In case of at least partial remission, high-dose busulfan/thiotepa (HD-BuTT) followed by aPBSCT was carried out. Patients refractory to induction or without complete remission after HD-BuTT received WBRT. Eight patients still alive in 2011 were contacted and Mini-Mental State Examination (MMSE) and the European Organisation for Research and Treatment of Cancer quality-of-life questionnaire (QLQ)-C30 were carried out. Results Of eight patients still alive, median follow-up is 116.9 months. Only one of nine irradiated patients is still alive with a severe neurologic deficit. In seven of eight patients treated with HD-BuTT, health condition and quality of life are excellent. MMSE and QLQ-C30 showed remarkably good results in patients who did not receive WBRT. All of them have a Karnofsky score of 90%-100%. Conclusions Follow-up shows an overall survival of 35%. In six of seven patients where WBRT could be avoided, no long-term neurotoxicity has been observed and all patients have an excellent quality of lif
Appraising and applying evidence about a diagnostic test during a performance-based assessment
BACKGROUND: The practice of Evidence-based Medicine requires that clinicians assess the validity of published research and then apply the results to patient care. We wanted to assess whether our soon-to-graduate medical students could appraise and apply research about a diagnostic test within a clinical context and to compare our students with peers trained at other institutions. METHODS: 4(th )year medical students who previously had demonstrated competency at probability revision and just starting first-year Internal Medicine residents were used for this research. Following an encounter with a simulated patient, subjects critically appraised a paper about an applicable diagnostic test and revised the patient's pretest probability given the test result. RESULTS: The medical students and residents demonstrated similar skills at critical appraisal, correctly answering 4.7 and 4.9, respectively, of 6 questions (p = 0.67). Only one out of 28 (3%) medical students and none of the 15 residents were able to correctly complete the probability revision task (p = 1.00). CONCLUSIONS: This study found that most students completing medical school are able to appraise an article about a diagnostic test but few are able to apply the information from the article to a patient. These findings raise questions about the clinical usefulness of the EBM skills possessed by graduating medical students within the area of diagnostic testing
Equation of state and phonon frequency calculations of diamond at high pressures
The pressure-volume relationship and the zone-center optical phonon frequency
of cubic diamond at pressures up to 600 GPa have been calculated based on
Density Functional Theory within the Local Density Approximation and the
Generalized Gradient Approximation. Three different approaches, viz. a
pseudopotential method applied in the basis of plane waves, an all-electron
method relying on Augmented Plane Waves plus Local Orbitals, and an
intermediate approach implemented in the basis of Projector Augmented Waves
have been used. All these methods and approximations yield consistent results
for the pressure derivative of the bulk modulus and the volume dependence of
the mode Grueneisen parameter of diamond. The results are at variance with
recent precise measurements up to 140 GPa. Possible implications for the
experimental pressure determination based on the ruby luminescence method are
discussed.Comment: 10 pages, 6 figure
Direct evidence of Rabi oscillations and antiresonance in a strongly coupled organic microcavity
We report the direct observation of 30-fs period Rabi oscillations between excitons and cavity photons in a strongly coupled J-aggregate microcavity by means of time-resolved up-conversion and spectral interferometry measurements. The time structure of the transmitted electric field, measured by linear spectral interferometry, shows pronounced ultrafast beats. Its spectral phase reveals a distinct signature caused by destructive interference between the coherent drive and the field radiated by the exciton. This antiresonance selectively probes the uncoupled exciton excitation, and its observation uncovers the coherent and ultrafast exchange of energy between the optically excited cavity and the J-aggregate excitons, as confirmed by transfer matrix calculations.</p
- …