1,272 research outputs found

    SxsA, a novel surface protein mediating cell aggregation and adhesive biofilm formation of Staphylococcus xylosus

    Get PDF
    Biofilm formation of staphylococci has been an emerging field of research for many years. However, the underlying molecular mechanisms are still not fully understood and vary widely between species and strains. The aim of this study was to identify new effectors impacting biofilm formation of two Staphylococcus xylosus strains. We identified a novel surface protein conferring cell aggregation, adherence to abiotic surfaces, and biofilm formation. The S. xylosus surface protein A (SxsA) is a large protein occurring in variable sizes. It lacks sequence similarity to other staphylococcal surface proteins but shows similar structural domain organization and functional features. Upon deletion of sxsA, adherence of S. xylosus strain TMW 2.1523 to abiotic surfaces was completely abolished and significantly reduced in TMW 2.1023. Macro- and microscopic aggregation assays further showed that TMW 2.1523 sxsA mutants exhibit reduced cell aggregation compared with the wildtype. Comparative genomic analysis revealed that sxsA is part of the core genome of S. xylosus, Staphylococcus paraxylosus, and Staphylococcus nepalensis and additionally encoded in a small group of Staphylococcus cohnii and Staphylococcus saprophyticus strains. This study provides insights into protein-mediated biofilm formation of S. xylosus and identifies a new cell wall-associated protein influencing cell aggregation and biofilm formation.Peer Reviewe

    Neuroprotective activation of astrocytes by methylmercury exposure in the inferior colliculus

    Get PDF
    Methylmercury (MeHg) is well known to induce auditory disorders such as dysarthria. When we performed a global analysis on the brains of mice exposed to MeHg by magnetic resonance imaging, an increase in the T1 signal in the inferior colliculus (IC), which is localized in the auditory pathway, was observed. Therefore, the purpose of this study is to examine the pathophysiology and auditory dysfunction induced by MeHg, focusing on the IC. Measurement of the auditory brainstem response revealed increases in latency and decreases in threshold in the IC of mice exposed to MeHg for 4 weeks compared with vehicle mice. Incoordination in MeHg-exposed mice was noted after 6 weeks of exposure, indicating that IC dysfunction occurs earlier than incoordination. There was no change in the number of neurons or microglial activity, while the expression of glial fibrillary acidic protein, a marker for astrocytic activity, was elevated in the IC of MeHg-exposed mice after 4 weeks of exposure, indicating that astrogliosis occurs in the IC. Suppression of astrogliosis by treatment with fluorocitrate exacerbated the latency and threshold in the IC evaluated by the auditory brainstem response. Therefore, astrocytes in the IC are considered to play a protective role in the auditory pathway. Astrocytes exposed to MeHg increased the expression of brain-derived neurotrophic factor in the IC, suggesting that astrocytic brain-derived neurotrophic factor is a potent protectant in the IC. This study showed that astrogliosis in the IC could be an adaptive response to MeHg toxicity. The overall toxicity of MeHg might be determined on the basis of the balance between MeHg-mediated injury to neurons and protective responses from astrocytes.This work was partly supported by a KAKENHI grant from the Japan Society for the Promotion of Science, grant numbers 15KK0024 and 17H04714 to Y.I. and 17K00569 to T.Y. This work was also financially supported in part by Tokushima Bunri University. This manuscript has been reviewed by a professional language editing service (American Journal Experts)

    Potentiation of 17 beta-estradiol synthesis in the brain and elongation of seizure latency through dietary supplementation with docosahexaenoic acid

    Get PDF
    Several studies have shown that docosahexaenoic acid (DHA) attenuates epileptic seizures; however, the molecular mechanism by which it achieves this effect is still largely unknown. DHA stimulates the retinoid X receptor, which reportedly regulates the expression of cytochrome P450 aromatase (P450arom). This study aimed to clarify how DHA suppresses seizures, focusing on the regulation of 17β-estradiol synthesis in the brain. Dietary supplementation with DHA increased not only the expression of P450arom, but also 17β-estradiol in the cerebral cortex. While DHA did not affect the duration or scores of the seizures induced by pentylenetetrazole, DHA significantly prolonged the seizure latency. A P450arom inhibitor, letrozole, reduced 17β-estradiol levels and completely suppressed the elongation of seizure latency elicited by DHA. These results suggest that DHA delays the onset of seizures by promoting the synthesis of 17β-estradiol in the brain. DHA upregulated the expression of anti-oxidative enzymes in the cerebral cortex. The oxidation in the cerebral cortex induced by pentylenetetrazole was significantly attenuated by DHA, and letrozole completely inhibited this suppressive action. Thus, the anti-oxidative effects of 17β-estradiol may be involved in the prevention of seizures mediated by DHA. This study revealed that 17β-estradiol in the brain mediated the physiological actions of DHA.This work was partially supported by grants from the Ministry of Education, Culture, Sports, Science and Technology, Japan, KAKENHI for Y.I., K.I. and T.Y. (Nos. 26740024, 26460139 and 25340047), a grant from the Mishima Kaiun Memorial Foundation for Y.I. and a grant from the SKYLARK Food Science Institute for Y.I. This work was also financially supported in part by Tokushima Bunri University. We thank Y. Kamihashi, Y. Utagawa, and K. Kojima for their technical assistance. We also acknowledge S. Smiley-Jewell and M. Paz Prada for editing the manuscript. This manuscript has been checked by a professional language editing service, American Journal Experts

    Effects of selected food phytochemicals in reducing the toxic actions of TCDD and p,p′-DDT in U937 macrophages

    Get PDF
    To assess the effectiveness of selected food phytochemicals in reducing the toxic effects of the environmental toxicants, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and p,p′-DDT (DDT), we tested the potencies of auraptene, nobiletin, zerumbone, and (±)-13-hydroxy-10-oxo-trans-11-octadecenoic acid (13-HOA) in reversing the inflammatory action of these toxicants in U937 human macrophages. Using quantitative RT–PCR as the initial screening assay, we identified antagonistic actions of zerumbone and auraptene against the action of TCDD and DDT in up-regulating the mRNA expressions of COX-2 and VEGF. The functional significance of the inhibitory action of zerumbone on COX-2 expression was confirmed by demonstrating its suppression of TCDD-induced activation of COX-2 gene expression in mouse MMDD1 cells. We tested auraptene on DDT-induced reactive oxygen species (ROS) formation in U937 macrophages and found that auraptene is a powerful agent antagonizing this action of DDT. To confirm the significance of these actions of zerumbone and auraptene at the cellular level, we assessed their influence on TCDD-induced apoptosis resistance in intact U937 macrophages and found that they are capable of reversing this action of TCDD. In conclusion, zerumbone and auraptene were identified to be the most effective agents in protecting U937 macrophages from developing these cell toxic effects of TCDD and DDT

    Response of soil biota to elevated atmospheric CO 2 in poplar model systems

    Full text link
    We tested the hypotheses that increased belowground allocation of carbon by hybrid poplar saplings grown under elevated atmospheric CO 2 would increase mass or turnover of soil biota in bulk but not in rhizosphere soil. Hybrid poplar saplings ( Populus × euramericana cv. Eugenei) were grown for 5 months in open-bottom root boxes at the University of Michigan Biological Station in northern, lower Michigan. The experimental design was a randomized-block design with factorial combinations of high or low soil N and ambient (34 Pa) or elevated (69 Pa) CO 2 in five blocks. Rhizosphere microbial biomass carbon was 1.7 times greater in high-than in low-N soil, and did not respond to elevated CO 2 . The density of protozoa did not respond to soil N but increased marginally ( P  < 0.06) under elevated CO 2 . Only in high-N soil did arbuscular mycorrhizal fungi and microarthropods respond to CO 2 . In high-N soil, arbuscular mycorrhizal root mass was twice as great, and extramatrical hyphae were 11% longer in elevated than in ambient CO 2 treatments. Microarthropod density and activity were determined in situ using minirhizotrons. Microarthropod density did not change in response to elevated CO 2 , but in high-N soil, microarthropods were more strongly associated with fine roots under elevated than ambient treatments. Overall, in contrast to the hypotheses, the strongest response to elevated atmospheric CO 2 was in the rhizosphere where (1) unchanged microbial biomass and greater numbers of protozoa ( P  < 0.06) suggested faster bacterial turnover, (2) arbuscular mycorrhizal root length increased, and (3) the number of microarthropods observed on fine roots rose.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42279/1/442-113-2-247_81130247.pd

    Characterization of MCF mammary epithelial cells overexpressing the Arylhydrocarbon receptor (AhR)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent reports indicate the existence of breast cancer cells expressing very high levels of the Arylhydrocarbon receptor (AhR), a ubiquitous intracellular receptor best known for mediating toxic action of dioxin and related pollutants. Positive correlation between the degree of AhR overexpression and states of increasing transformation of mammary epithelial cells appears to occur in the absence of any exogenous AhR ligands. These observations have raised many questions such as why and how AhR is overexpressed in breast cancer and its physiological roles in the progression to advanced carcinogenic transformation. To address those questions, we hypothesized that AhR overexpression occurs in cells experiencing deficiencies in normally required estrogen receptor (ER) signaling, and the basic role of AhR in such cases is to guide the affected cells to develop orchestrated cellular changes aimed at substituting the normal functions of ER. At the same time, the AhR serves as the mediator of the cell survival program in the absence of ER signaling.</p> <p>Methods</p> <p>We subjected two lines of Michigan Cancer Foundation (MCF) mammary epithelial cells to 3 different types ER interacting agents for a number of passages and followed the changes in the expression of AhR mRNA. The resulting sublines were analyzed for phenotypical changes and unique molecular characteristics.</p> <p>Results</p> <p>MCF10AT1 cells continuously exposed to 17-beta-estradiol (E2) developed sub-lines that show AhR overexpression with the characteristic phenotype of increased proliferation, and distinct resistance to apoptosis. When these chemically selected cell lines were treated with a specific AhR antagonist, 3-methoxy-4-nitroflavone (MNF), both of the above abnormal cellular characteristics disappeared, indicating the pivotal role of AhR in expressing those cellular phenotypes. The most prominent molecular characteristics of these AhR overexpressing MCF cells were found to be overexpression of ErbB2 and COX-2. Furthermore, we could demonstrate that suppression of AhR functions through anti-AhR siRNA or MNF causes the recovery of ERalpha functions.</p> <p>Conclusion</p> <p>One of the main causes for AhR overexpression in these MCF breast cancer cells appears to be the loss of ERalpha functions. This phenomenon is likely to be based on the mutually antagonistic relationship between ER and AhR.</p

    Simulation of surface ozone pollution in the Central Gulf Coast region during summer synoptic condition using WRF/Chem air quality model

    Get PDF
    AbstractWRF/Chem, a fully coupled meteorology–chemistry model, was used for the simulation of surface ozone pollution over the Central Gulf Coast region in Southeast United States of America (USA). Two ozone episodes during June 8–11, 2006 and July 18–22, 2006 characterized with hourly mixing ratios of 60–100ppbv, were selected for the study. Suite of sensitivity experiments were conducted with three different planetary boundary layer (PBL) schemes and three land surface models (LSM). The results indicate that Yonsei–University (YSU) PBL scheme in combination with NOAH and SOIL LSMs produce better simulations of both the meteorological and chemical species than others. YSU PBL scheme in combination with NOAH LSM had slightly better simulation than with SOIL scheme. Spatial comparison with observations showed that YSUNOAH experiment well simulated the diurnal mean ozone mixing ratio, timing of diurnal cycle as well as range in ozone mixing ratio at most monitoring stations with an overall correlation of 0.726, bias of –1.55ppbv, mean absolute error of 8.11ppbv and root mean square error of 14.5ppbv; and with an underestimation of 7ppbv in the daytime peak ozone and about 8% in the daily average ozone. Model produced 1–hr, and 8–hr average ozone values were well correlated with corresponding observed means. The minor underestimation of daytime ozone is attributed to the slight underestimation of air temperature which tend to slow–down the ozone production and overestimation of wind speeds which transport the produced ozone at a faster rate. Simulated mean horizontal and vertical flow patterns suggest the role of the horizontal transport and the PBL diffusion in the development of high ozone during the episode. Overall, the model is found to perform reasonably well to simulate the ozone and other precursor pollutants with good correlations and low error metrics. Thus the study demonstrates the potential of WRF/Chem model for air quality prediction in coastal environments

    Activation of inflammatory responses in human U937 macrophages by particulate matter collected from dairy farms: an in vitro expression analysis of pro-inflammatory markers

    Get PDF
    Abstract Background The purpose of the present study was to investigate activation of inflammatory markers in human macrophages derived from the U937 cell line after exposure to particulate matter (PM) collected on dairy farms in California and to identify the most potent components of the PM. Methods PM from different dairies were collected and tested to induce an inflammatory response determined by the expression of various pro-inflammatory genes, such as Interleukin (IL)-8, in U937 derived macrophages. Gel shift and luciferase reporter assays were performed to examine the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Toll-like-receptor 4 (TLR4). Results Macrophage exposure to PM derived from dairy farms significantly activated expression of pro-inflammatory genes, including IL-8, cyclooxygenase 2 and Tumor necrosis factor-alpha, which are hallmarks of inflammation. Acute phase proteins, such as serum amyloid A and IL-6, were also significantly upregulated in macrophages treated with PM from dairies. Coarse PM fractions demonstrated more pro-inflammatory activity on an equal-dose basis than fine PM. Urban PM collected from the same region as the dairy farms was associated with a lower concentration of endotoxin and produced significantly less IL-8 expression compared to PM collected on the dairy farms. Conclusion The present study provides evidence that the endotoxin components of the particles collected on dairies play a major role in mediating an inflammatory response through activation of TLR4 and NF-κB signaling
    corecore