598 research outputs found

    Effect of Substrate Support on Dynamic Graphene/Metal Electrical Contacts.

    Get PDF
    Recent advances in graphene and other two-dimensional (2D) material synthesis and characterization have led to their use in emerging technologies, including flexible electronics. However, a major challenge is electrical contact stability, especially under mechanical straining or dynamic loading, which can be important for 2D material use in microelectromechanical systems. In this letter, we investigate the stability of dynamic electrical contacts at a graphene/metal interface using atomic force microscopy (AFM), under static conditions with variable normal loads and under sliding conditions with variable speeds. Our results demonstrate that contact resistance depends on the nature of the graphene support, specifically whether the graphene is free-standing or supported by a substrate, as well as on the contact load and sliding velocity. The results of the dynamic AFM experiments are corroborated by simulations, which show that the presence of a stiff substrate, increased load, and reduced sliding velocity lead to a more stable low-resistance contact

    Chameleon Coatings: Adaptive Surfaces to Reduce Friction and Wear in Extreme Environments

    Get PDF
    Adaptive nanocomposite coating materials that automatically and reversibly adjust their surface composition and morphology via multiple mechanisms are a promising development for the reduction of friction and wear over broad ranges of ambient conditions encountered in aerospace applications, such as cycling of temperature and atmospheric composition. Materials selection for these composites is based on extensive study of interactions occurring between solid lubricants and their surroundings, especially with novel in situ surface characterization techniques used to identify adaptive behavior on size scales ranging from 10−10 to 10−4 m. Recent insights on operative solid-lubricant mechanisms and their dependency upon the ambient environment are reviewed as a basis for a discussion of the state of the art in solid-lubricant materials

    Survey on software tools that implement deep learning algorithms on intel/x86 and IBM/Power8/Power9 platforms

    Get PDF
    Neural networks are becoming more and more popular in scientific field and in the industry. It is mostly because new solutions using neural networks show state-of-the-art results in the domains previously occupied by traditional methods, eg. computer vision, speech recognition etc. But to get these results neural networks become progressively more complex, thus needing a lot more training. The training of neural networks today can take weeks. This problems can be solved by parallelization of the neural networks training and using modern clusters and supercomputers, which can significantly reduce the learning time. Today, a faster training for data scientist is essential, because it allows to get the results faster to make the next decision. In this paper we provide an overview of distributed learning provided by the popular modern deep learning frameworks, both in terms of provided functionality and performance. We consider multiple hardware choices: training on multiple GPUs and multiple computing nodes. © The Authors 2019.Council on grants of the President of the Russian Federation: MK-2330.2019.9You can use a special version of Caffe, NVCaffe, which is supported by NVidia. This version was created specifically for the use of several GPUs. User instructions can be found in [35].For NVidia, MXNet is supported by Nvidia Cloud. MXNet also has support for CUDA and CuDNN.The results described in this paper were obtained with the financial support of the grant from the Russian Federation President Fund (MK-2330.2019.9)

    Multifrequency dial sensing of the atmospheric gaseous constituents using the first and second harmonics of a tunable CO2 laser radiation

    Get PDF
    The results of field measurements of concentration of some gaseous components of the atmosphere along the paths, in Sofia, Bulgaria, using a gas analyzer based on the use of a CO2 laser radiation frequency-doubled with ZnGeP2 monocrystals are presented. The gas analyzer is a traditional long path absorption meter. Radiation from the tunable CO2 laser of low pressure and from an additional He-Ne laser is directed to a colliminating hundredfold Gregori telescope with a 300 mm diameter of the principal mirror. The dimensions of the mirrors of a retroreflector 500 x 500 mm and a receiving telescope allow one to totally intercept the beam passed through the atmospheric layer under study and back

    Nitrogen and Hydrogen Plasma Treatments of Multiwalled Carbon Nanotubes

    Get PDF
    This article investigates plasma treatment of vertically aligned multiwall carbon nanotube (CNT) films in different plasma environments for modification of surface chemistry and morphology. The surfaces of the CNTs were functionalized with a pulsed dc plasma treatment, where the power was directly applied to the nanotube film in low pressure argon/nitrogen and argon/hydrogen backgrounds. Optical emission spectroscopy was used to detect atomic and molecular excitations in the gas mixtures as well as in pure gases in the vicinity of the CNT films. In situx-ray photoelectron spectroscopy was performed on the treated samples to examine CNT surface chemistry after treatment. The analysis of CNT films after nitrogen and hydrogen treatment indicated formation of both C-N and C-H bonds, respectively. Correlations of the plasma characteristics to the surface chemistry and morphology of the CNT surfaces are discussed

    Photo-Sensitivity of Large Area Physical Vapor Deposited Mono and Bilayer MoS2

    Get PDF
    We present photosensitivity in large area physical vapour deposited mono and bi-layer MoS2 films. Photo-voltaic effect was observed in single layer MoS2 without any apparent rectifying junctions, making device fabrication straightforward. For bi-layers, no such effect was present, suggesting strong size effect in light-matter interaction. The photo-voltaic effect was observed to highly direction dependent in the film plane, which suggests that the oblique deposition configuration plays a key role in developing the rectifying potential gradient. To the best of our knowledge, this is the first report of any large area and transfer free MoS2 photo device with performance comparable to their exfoliated counterparts

    Electrostatic Quadrupole Plasma Mass Spectrometer Measurements during Thin Film Depositions using Simultaneous Matrix Assisted Pulsed Laser Evaporation and Magnetron Sputtering

    Get PDF
    A hybrid plasma deposition process, combining matrix assisted pulsed laser evaporation (MAPLE) of carbon nanopearls (CNPs) with magnetron sputtering of gold was investigated for growth of composite films, where 100 nm sized CNPs were encapsulated into a gold matrix. Composition and morphology of such composite films was characterized with x-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy (TEM) analysis. Carbondeposits on a gold magnetron sputter target and carbon impurities in the gold matrices of depositedfilms were observed while codepositing from gold and frozen toluene-CNP MAPLE targets in pure argon. Electrostatic quadrupole plasma analysis was used to determine that a likely mechanism for generation of carbon impurities was a reaction between toluene vapor generated from the MAPLE target and the argon plasma originating from the magnetron sputtering process. Carbon impurities of codeposited films were significantly reduced by introducing argon-oxygen mixtures into the deposition chamber; reactive oxygen species such as O and O+ effectively removed carbon contamination of gold matrix during the codeposition processes. Increasing the oxygen to argon ratio decreased the magnetron target sputter rate, and hence hybrid process optimization to prevent gold matrix contamination and maintain a high sputter yield is needed. High resolution TEM with energy dispersive spectrometry elemental mapping was used to study carbon distribution throughout the gold matrix as well as embedded CNP clusters. This research has demonstrated that a hybrid MAPLE and magnetron sputtering codeposition process is a viable means for synthesis of composite thin films from premanufactured nanoscale constituents, and that cross-process contaminations can be overcome with understanding of hybrid plasma process interaction mechanisms

    ВИЧ-инфекция и пневмоцистная пневмония

    Get PDF
    .

    Effect of pulse flows of charged particles on the structure and mechanical properties of metals

    Get PDF
    We investigate the effect of pulse flows of hydrogen, helium, and hydrogen-helium plasma of a specific power of 20-30 GW/m² on the surface structure and mechanical properties of vanadium, niobium, and Kh16N15M3B and Kh18N10T austenitic stainless steelsyesBelgorod State Universit
    corecore