1,872 research outputs found

    Marriage, Labor Supply and the Dynamics of the Social Safety Net

    Get PDF
    The 1996 PRWORA reform introduced time limits on the receipt of welfare in the United States. We use variation by state and across demographic groups to provide reduced form evidence showing that such limits led to a fall in welfare claims (partly due to \banking" benefits for future use), a rise in employment, and a decline in divorce rates. We then specify and estimate a life-cycle model of marriage, labor supply and divorce under limited commitment to better understand the mechanisms behind these behavioral responses, carry out counterfactual analysis with longer run impacts and evaluate the welfare effects of the program. Based on the model, which reproduces the reduced form estimates, we show that among low educated women, instead of relying on TANF, single mothers work more, more mothers remain married, some move to relying only on food stamps and, in ex-ante welfare terms, women are worse off

    Carbon nanotubes as target for directional detection of light WIMP

    Get PDF
    In this paper I will briefly introduce the idea of using Carbon Nanotubes (CNT) as target for the detection of low mass WIMPs with the additional information of directionality. I will also present the experimental efforts of developing a Time Projection Chamber with a CNT target inside and the results of a test beam at the Beam Test Facility of INFN-LNF.Comment: 3 figures, IFAE2017 poster session proceeding

    Commissioning of the MEG II tracker system

    Full text link
    The MEG experiment at the Paul Scherrer Institut (PSI) represents the state of the art in the search for the charged Lepton Flavour Violating (cLFV) μ+e+γ\mu^+ \rightarrow e^+ \gamma decay. With the phase 1, MEG set the new world best upper limit on the \mbox{BR}(\mu^+ \rightarrow e^+ \gamma) < 4.2 \times 10^{-13} (90% C.L.). With the phase 2, MEG II, the experiment aims at reaching a sensitivity enhancement of about one order of magnitude compared to the previous MEG result. The new Cylindrical Drift CHamber (CDCH) is a key detector for MEG II. CDCH is a low-mass single volume detector with high granularity: 9 layers of 192 drift cells, few mm wide, defined by 12000\sim 12000 wires in a stereo configuration for longitudinal hit localization. The filling gas mixture is Helium:Isobutane (90:10). The total radiation length is 1.5×1031.5 \times 10^{-3} \mbox{X}_0, thus minimizing the Multiple Coulomb Scattering (MCS) contribution and allowing for a single-hit resolution <120< 120 μ\mum and an angular and momentum resolutions of 6 mrad and 90 keV/c respectively. This article presents the CDCH commissioning activities at PSI after the wiring phase at INFN Lecce and the assembly phase at INFN Pisa. The endcaps preparation, HV tests and conditioning of the chamber are described, aiming at reaching the final stable working point. The integration into the MEG II experimental apparatus is described, in view of the first data taking with cosmic rays and μ+\mu^+ beam during the 2018 and 2019 engineering runs. The first gas gain results are also shown. A full engineering run with all the upgraded detectors and the complete DAQ electronics is expected to start in 2020, followed by three years of physics data taking.Comment: 10 pages, 12 figures, 1 table, proceeding at INSTR'20 conference, accepted for publication in JINS

    Extended calibration range for prompt photon emission in ion beam irradiation

    Full text link
    Monitoring the dose delivered during proton and carbon ion therapy is still a matter of research. Among the possible solutions, several exploit the measurement of the single photon emission from nuclear decays induced by the irradiation. To fully characterize such emission the detectors need development, since the energy spectrum spans the range above the MeV that is not traditionally used in medical applications. On the other hand, a deeper understanding of the reactions involving gamma production is needed in order to improve the physic models of Monte Carlo codes, relevant for an accurate prediction of the prompt-gamma energy spectrum.This paper describes a calibration technique tailored for the range of energy of interest and reanalyzes the data of the interaction of a 80MeV/u fully stripped carbon ion beam with a Poly-methyl methacrylate target. By adopting the FLUKA simulation with the appropriate calibration and resolution a significant improvement in the agreement between data and simulation is reported.Comment: 4 pages, 7 figures, Submitted to JINS

    Measurement of secondary particle production induced by particle therapy ion beams impinging on a PMMA target

    Get PDF
    Particle therapy is a technique that uses accelerated charged ions for cancer treatment and combines a high irradiation precision with a high biological effectiveness in killing tumor cells [1]. Informations about the secondary particles emitted in the interaction of an ion beam with the patient during a treatment can be of great interest in order to monitor the dose deposition. For this purpose an experiment at the HIT (Heidelberg Ion-Beam Therapy Center) beam facility has been performed in order to measure fluxes and emission profiles of secondary particles produced in the interaction of therapeutic beams with a PMMA target. In this contribution some preliminary results about the emission profiles and the energy spectra of the detected secondaries will be presente

    Single-hit resolution measurement with MEG II drift chamber prototypes

    Get PDF
    Drift chambers operated with helium-based gas mixtures represent a common solution for tracking charged particles keeping the material budget in the sensitive volume to a minimum. The drawback of this solution is the worsening of the spatial resolution due to primary ionisation fluctuations, which is a limiting factor for high granularity drift chambers like the MEG II tracker. We report on the measurements performed on three different prototypes of the MEG II drift chamber aimed at determining the achievable single-hit resolution. The prototypes were operated with helium/isobutane gas mixtures and exposed to cosmic rays, electron beams and radioactive sources. Direct measurements of the single hit resolution performed with an external tracker returned a value of 110 μ\mum, consistent with the values obtained with indirect measurements performed with the other prototypes.Comment: 18 pages, 18 figure

    Study of the time and space distribution of beta+ emitters from 80 MeV/u carbon ion beam irradiation on PMMA

    Full text link
    Proton and carbon ion therapy is an emerging technique used for the treatment of solid cancers. The monitoring of the dose delivered during such treatments and the on-line knowledge of the Bragg peak position is still a matter of research. A possible technique exploits the collinear 511\ \kilo\electronvolt photons produced by positrons annihilation from β+\beta^+ emitters created by the beam. This paper reports rate measurements of the 511\ \kilo\electronvolt photons emitted after the interactions of a 80\ \mega\electronvolt / u fully stripped carbon ion beam at the Laboratori Nazionali del Sud (LNS) of INFN, with a Poly-methyl methacrylate target. The time evolution of the β+\beta^+ rate was parametrized and the dominance of 11C^{11}C emitters over the other species (13N^{13}N, 15O^{15}O, 14O^{14}O) was observed, measuring the fraction of carbon ions activating β+\beta^+ emitters A0=(10.3±0.7)103A_0=(10.3\pm0.7)\cdot10^{-3}. The average depth in the PMMA of the positron annihilation from β+\beta^+ emitters was also measured, D_{\beta^+}=5.3\pm1.1\ \milli\meter, to be compared to the expected Bragg peak depth D_{Bragg}=11.0\pm 0.5\ \milli\meter obtained from simulations

    Charged particle's flux measurement from PMMA irradiated by 80 MeV/u carbon ion beam

    Full text link
    Hadrontherapy is an emerging technique in cancer therapy that uses beams of charged particles. To meet the improved capability of hadrontherapy in matching the dose release with the cancer position, new dose monitoring techniques need to be developed and introduced into clinical use. The measurement of the fluxes of the secondary particles produced by the hadron beam is of fundamental importance in the design of any dose monitoring device and is eagerly needed to tune Monte Carlo simulations. We report the measurements done with charged secondary particles produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the INFN Laboratori Nazionali del Sud, Catania, with a Poly-methyl methacrylate target. Charged secondary particles, produced at 90°\degree with respect to the beam axis, have been tracked with a drift chamber, while their energy and time of flight has been measured by means of a LYSO scintillator. Secondary protons have been identified exploiting the energy and time of flight information, and their emission region has been reconstructed backtracking from the drift chamber to the target. Moreover a position scan of the target indicates that the reconstructed emission region follows the movement of the expected Bragg peak position. Exploting the reconstruction of the emission region, an accuracy on the Bragg peak determination in the submillimeter range has been obtained. The measured differential production rate for protons produced with EkinProd>E^{\rm Prod}_{\rm kin} > 83 MeV and emitted at 90°\degree with respect to the beam line is: dNP/(dNCdΩ)(EkinProd>83 MeV,θ=90°)=(2.69±0.08stat±0.12sys)×104sr1dN_{\rm P}/(dN_{\rm C}d\Omega)(E^{\rm Prod}_{\rm kin} > 83 {\rm ~MeV}, \theta=90\degree)= (2.69\pm 0.08_{\rm stat} \pm 0.12_{\rm sys})\times 10^{-4} sr^{-1}.Comment: 13 pages, 9 figure

    Averages of b-hadron Properties at the End of 2005

    Get PDF
    This article reports world averages for measurements on b-hadron properties obtained by the Heavy Flavor Averaging Group (HFAG) using the available results as of at the end of 2005. In the averaging, the input parameters used in the various analyses are adjusted (rescaled) to common values, and all known correlations are taken into account. The averages include lifetimes, neutral meson mixing parameters, parameters of semileptonic decays, branching fractions of B meson decays to final states with open charm, charmonium and no charm, and measurements related to CP asymmetries
    corecore