Proton and carbon ion therapy is an emerging technique used for the treatment
of solid cancers. The monitoring of the dose delivered during such treatments
and the on-line knowledge of the Bragg peak position is still a matter of
research. A possible technique exploits the collinear 511\ \kilo\electronvolt
photons produced by positrons annihilation from β+ emitters created by
the beam. This paper reports rate measurements of the 511\ \kilo\electronvolt
photons emitted after the interactions of a 80\ \mega\electronvolt / u fully
stripped carbon ion beam at the Laboratori Nazionali del Sud (LNS) of INFN,
with a Poly-methyl methacrylate target. The time evolution of the β+
rate was parametrized and the dominance of 11C emitters over the other
species (13N, 15O, 14O) was observed, measuring the fraction of
carbon ions activating β+ emitters A0=(10.3±0.7)⋅10−3. The
average depth in the PMMA of the positron annihilation from β+ emitters
was also measured, D_{\beta^+}=5.3\pm1.1\ \milli\meter, to be compared to the
expected Bragg peak depth D_{Bragg}=11.0\pm 0.5\ \milli\meter obtained from
simulations