42 research outputs found

    4.5 kV Bi-mode Gate Commutated Thyristor design with High Power Technology and shallow diode-anode

    Get PDF
    The Bi-mode Gate Commutated Thyristor (BGCT) is a reverse conducting Gate Commutated Thyristor (GCT) where the diode regions are intertwined with GCT parts. In this work we examine the impact of shallow diode-anodes on the operation of the GCT and propose the introduction of optimised High Power Technology (HPT+) in the GCT part. In order to assess and compare the new designs with the conventional, a multi-cell mixed mode model for large area device modelling was used. The analysis of the simulation results show that the shallow diode does not affect the MCC whereas the introduction of the HPT+ allows for a step improvement

    New Bi-Mode Gate-Commutated Thyristor Design Concept for High-Current Controllability and Low ON-State Voltage Drop

    Get PDF
    © 2016 IEEE. A new design approach for bi-mode gatecommutated thyristors (BGCTs) is proposed for high-current controllability and low ON-state voltage drop. Using a complex multi-cell mixed-mode simulation model which can capture the maximum controllable current (MCC) of large area devices, a failure analysis was performed to demonstrate that the new design concept can increase the MCC by about 27% at room temperature and by about 17% at 400 K while minimizing the ON-state voltage drop. The simulations depict that the improvement comes from the new approach to terminate the GCT part in the BGCT way of intertwining GCT and diode regions for reverse conducting operation

    The Stripe Fortified GCT:A new GCT design for maximizing the controllable current

    Get PDF
    In this paper we introduce a new GCT design, namely the Stripe Fortified GCT, for the purpose of maximizing the controllable current by optimizing the current flow path in the device during turn-off. The main design of the new device along with variants are introduced. The MCC performance of this novel structure is assessed with a developed two dimensional model for full wafer simulations. Our results show that this new design is a very good candidate for increasing the MCC to values more than 5000A

    A phase IIa, nonrandomized study of radium-223 dichloride in advanced breast cancer patients with bone-dominant disease

    Get PDF
    Radium-223 dichloride (radium-223) mimics calcium and emits high-energy, short-range alpha-particles resulting in an antitumor effect on bone metastases. This open-label, phase IIa nonrandomized study investigated safety and short-term efficacy of radium-223 in breast cancer patients with bone-dominant disease. Twenty-three advanced breast cancer patients with progressive bone-dominant disease, and no longer candidates for further endocrine therapy, were to receive radium-223 (50 kBq/kg IV) every 4 weeks for 4 cycles. The coprimary end points were change in urinary N-telopeptide of type 1 (uNTX-1) and serum bone alkaline phosphatase (bALP) after 16 weeks of treatment. Exploratory end points included sequential 18F-fluorodeoxyglucose positron emission tomography and computed tomography (FDG PET/CT) to assess metabolic changes in osteoblastic bone metastases. Safety data were collected for all patients. Radium-223 significantly reduced uNTX-1 and bALP from baseline to end of treatment. Median uNTX-1 change was −10.1 nmol bone collagen equivalents/mmol creatinine (−32.8 %; P = 0.0124); median bALP change was −16.7 ng/mL (−42.0 %; P = 0.0045). Twenty of twenty-three patients had FDG PET/CT identifying 155 hypermetabolic osteoblastic bone lesions at baseline: 50 lesions showed metabolic decrease (≥25 % reduction of maximum standardized uptake value from baseline) after 2 radium-223 injections [32.3 % metabolic response rate (mRR) at week 9], persisting after the treatment period (41.5 % mRR at week 17). Radium-223 was safe and well tolerated. Radium-223 targets areas of increased bone metabolism and shows biological activity in advanced breast cancer patients with bone-dominant disease

    CD5 levels define functionally heterogeneous populations of naïve human CD4+ T cells

    Get PDF
    Studies in murine models show that subthreshold TCR interactions with self-peptide are required for thymic development and peripheral survival of naïve T cells. Recently, differences in the strength of tonic TCR interactions with self-peptide, as read-out by cell surface levels of CD5, were associated with distinct effector potentials among sorted populations of T cells in mice. However, whether CD5 can also be used to parse functional heterogeneity among human T cells is less clear. Our study demonstrates that CD5 levels correlate with TCR signal strength in human naïve CD4+ T cells. Further, we describe a relationship between CD5 levels on naïve human CD4+ T cells and binding affinity to foreign peptide, in addition to a predominance of CD5hi T cells in the memory compartment. Differences in gene expression and biases in cytokine production potential between CD5lo and CD5hi naïve human CD4+ T cells are consistent with observations in mice. Together, these data validate the use of CD5 surface levels as a marker of heterogeneity among human naïve CD4+ T cells with important implications for the identification of functionally biased T- cell populations that can be exploited to improve the efficacy of adoptive cell therapies

    Most bowel cancer symptoms do not indicate colorectal cancer and polyps: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bowel symptoms are often considered an indication to perform colonoscopy to identify or rule out colorectal cancer or precancerous polyps. Investigation of bowel symptoms for this purpose is recommended by numerous clinical guidelines. However, the evidence for this practice is unclear. The objective of this study is to systematically review the evidence about the association between bowel symptoms and colorectal cancer or polyps.</p> <p>Methods</p> <p>We searched the literature extensively up to December 2008, using MEDLINE and EMBASE and following references. For inclusion in the review, papers from cross sectional, case control and cohort studies had to provide a 2×2 table of symptoms by diagnosis (colorectal cancer or polyps) or sufficient data from which that table could be constructed. The search procedure, quality appraisal, and data extraction was done twice, with disagreements resolved with another reviewer. Summary ROC analysis was used to assess the diagnostic performance of symptoms to detect colorectal cancer and polyps.</p> <p>Results</p> <p>Colorectal cancer was associated with rectal bleeding (AUC 0.66; LR+ 1.9; LR- 0.7) and weight loss (AUC 0.67, LR+ 2.5, LR- 0.9). Neither of these symptoms was associated with the presence of polyps. There was no significant association of colorectal cancer or polyps with change in bowel habit, constipation, diarrhoea or abdominal pain. Neither the clinical setting (primary or specialist care) nor study type was associated with accuracy.</p> <p>Most studies had methodological flaws. There was no consistency in the way symptoms were elicited or interpreted in the studies.</p> <p>Conclusions</p> <p>Current evidence suggests that the common practice of performing colonoscopies to identify cancers in people with bowel symptoms is warranted only for rectal bleeding and the general symptom of weight loss. Bodies preparing guidelines for clinicians and consumers to improve early detection of colorectal cancer need to take into account the limited value of symptoms.</p

    Experimentally validated three dimensional GCT wafer level simulations

    No full text
    In this paper we present a wafer level three-dimensional simulation model of the Gate Commutated Thyristor (GCT) under inductive switching conditions. The simulations are validated by extensive experimental measurements. To the authors' knowledge such a complex simulation domain has not been used so far. This method allows the in depth study of large area devices such as GCTs, Gate Turn Off Thyristors (GTOs) and Phase Control Thyristors (PCTs). The model captures complex phenomena, such as current filamentation including subsequent failure, which allow us to predict the Maximum Controllable turn-off Current (MCC) and the Safe Operating Area (SOA) previously impossible using 2D distributed models. © 2012 IEEE

    Parameters influencing the maximum controllable current in gate commutated thyristors

    No full text
    The model of interconnected numerical device segments can give a prediction on the dynamic performance of large area full wafer devices such as the Gate Commutated Thyristors (GCTs) and can be used as an optimisation tool for designing GCTs. In this study the authors evaluate the relative importance of the shallow p-base thickness, its peak concentration, the depth of the p-base and the buffer peak concentration. © The Institution of Engineering and Technology 2014

    An experimental demonstration of a 4.5 kV “Bi-mode Gate Commutated Thyristor” (BGCT)

    No full text
    In this work we present the first experimental results of a Bi-mode Gate Commutated Thyristor (BGCT). The BGCT is a new type of Reverse Conducting-Integrated Gate Commutated Thyristor (RC-IGCT). In a conventional RC-IGCT, the IGCT and diode are integrated into a single wafer but they are fully separated from each other. The novel BGCT on the other hand features an interdigitated integration of diode- and GCT-areas. This interdigitated integration results in an improved diode as well as GCT area, better thermal distribution, soft turn-off/reverse recovery and lower leakage current compared to conventional RC-IGCTs. We have discussed the advantages of a new diode anode design in BGCT, which is shallower than that of the conventional RC-IGCT. We have successfully demonstrated the BGCT concept with 38 mm, 4.5 kV prototypes and compared the on-state, turn-off and blocking characteristics with conventional RC-IGCTs both in GCT- and diode-modes of operation
    corecore