1,483 research outputs found

    Racing Multi-Objective Selection Probabilities

    Get PDF
    In the context of Noisy Multi-Objective Optimization, dealing with uncertainties requires the decision maker to define some preferences about how to handle them, through some statistics (e.g., mean, median) to be used to evaluate the qualities of the solutions, and define the corresponding Pareto set. Approximating these statistics requires repeated samplings of the population, drastically increasing the overall computational cost. To tackle this issue, this paper proposes to directly estimate the probability of each individual to be selected, using some Hoeffding races to dynamically assign the estimation budget during the selection step. The proposed racing approach is validated against static budget approaches with NSGA-II on noisy versions of the ZDT benchmark functions

    Automatization of process of developing budget in the oil and gas industry

    Get PDF
    The aim of this study is to analyze and evaluate the software in budget process. Consolidated budget calculation of the cost of enterprises construction, buildings and structures is a document that defines the limit of the estimated funds needed to complete construction of all facilities envisaged by the project. Approved consolidated estimated budget of the cost of construction is the basis for determining the limit of capital investment and the opening of construction financing. The quality of the development of such budget depends on many factors, one of which is the use of advanced software products in the field of budget process automation. The article shows the advantages of modern software this field. The conclusion about the basic requirements to be met by the software in the budget business

    Pilot, Rollout and Monte Carlo Tree Search Methods for Job Shop Scheduling

    Get PDF
    Greedy heuristics may be attuned by looking ahead for each possible choice, in an approach called the rollout or Pilot method. These methods may be seen as meta-heuristics that can enhance (any) heuristic solution, by repetitively modifying a master solution: similarly to what is done in game tree search, better choices are identified using lookahead, based on solutions obtained by repeatedly using a greedy heuristic. This paper first illustrates how the Pilot method improves upon some simple well known dispatch heuristics for the job-shop scheduling problem. The Pilot method is then shown to be a special case of the more recent Monte Carlo Tree Search (MCTS) methods: Unlike the Pilot method, MCTS methods use random completion of partial solutions to identify promising branches of the tree. The Pilot method and a simple version of MCTS, using the ε\varepsilon-greedy exploration paradigms, are then compared within the same framework, consisting of 300 scheduling problems of varying sizes with fixed-budget of rollouts. Results demonstrate that MCTS reaches better or same results as the Pilot methods in this context.Comment: Learning and Intelligent OptimizatioN (LION'6) 7219 (2012

    Modeling for control of an inflatable space reflector, the nonlinear 1-D case

    Get PDF
    corecore