42 research outputs found

    Exercise-induced tendon and bone injury in recreational runners: A test-retest reliability study

    Get PDF
    Background: Long-distance runners are prone to injuries including Achilles tendinopathy and medial tibial stress syndrome. We have developed an Internet comprehensive self-report questionnaire examining the medical history, injury history, and running habits of adult recreational runners. Objective: The objective of the study was to evaluate two alternative forms of test-retest reliability of a comprehensive self-report Internet questionnaire retrospectively examining the medical history, injury history, and running habits among a sample of adult recreational runners. This will contribute to the broad aims of a wider study investigating genetics and running injury. Methods: Invitations to complete an Internet questionnaire were sent by email to a convenience pilot population (test group 1). Inclusion criteria required participants to be a recreational runner age 18 or over, who ran over 15 km per week on a consistent basis. The survey questions addressed regular running habits and any injuries (including signs, symptoms, and diagnosis) of the lower limbs that resulted in discontinuation of running for a period of 2 consecutive weeks or more, within the last 2 years. Questions also addressed general health, age, sex, height, weight, and ethnic background. Participants were then asked to repeat the survey using the Internet platform again after 10-14 days. Following analysis of test group 1, we soft-launched the survey to a larger population (test group 2), through a local running club of 900 members via email platform. The same inclusion criteria applied, however, participants were asked to complete a repeat of the survey by telephone interview after 7-10 days. Selected key questions, important to clarify inclusion or exclusion from the wider genetics study, were selected to evaluate test-retest reliability. Reliability was quantified using the kappa coefficient for categorical data. Results: In response to the invitation, 28 participants accessed the survey from test group 1, 23 completed the Internet survey on the first occasion, and 20 completed the Internet retest within 10-21 days. Test-retest reliability scored moderate to almost perfect (kappa=.41 to .99) for 19/19 of the key questions analyzed. Following the invitation, 122 participants accessed the survey from test group 2, 101 completed the Internet survey on the first occasion, and 50 were randomly selected and contacted by email inviting them to repeat the survey by telephone interview. There were 33 participants that consented to the telephone interview and 30 completed the questionnaire within 7-10 days. Test-retest reliability scored moderate to almost perfect for 18/19 (kappa=.41 to .99) and slight for 1/19 of the key questions analyzed. Conclusions: We successfully developed a self-reported, retrospective questionnaire, delivered using Internet software, providing stable and reliable answers. We demonstrate that our survey provides a relatively quick, easy to complete, and cost effective method to collect epidemiological data from recreational runners and evaluate these participants for inclusion into a genetic study

    Analysis of the Effects of Dietary Pattern on the Oral Microbiome of Elite Endurance Athletes

    Get PDF
    Although the oral microbiota is known to play a crucial role in human health, there are few studies of diet x oral microbiota interactions, and none in elite athletes who may manipulate their intakes of macronutrients to achieve different metabolic adaptations in pursuit of optimal endurance performance. The aim of this study was to investigate the shifts in the oral microbiome of elite male endurance race walkers from Europe, Asia, the Americas and Australia, in response to one of three dietary patterns often used by athletes during a period of intensified training: a High Carbohydrate (HCHO; = 9; with 60% energy intake from carbohydrates; ~8.5 g kg day carbohydrate, ~2.1 g kg day protein, 1.2 g kg day fat) diet, a Periodised Carbohydrate (PCHO; = 10; same macronutrient composition as HCHO, but the intake of carbohydrates is different across the day and throughout the week to support training sessions with high or low carbohydrate availability) diet or a ketogenic Low Carbohydrate High Fat (LCHF; = 10; 0.5 g kg day carbohydrate; 78% energy as fat; 2.1 g kg day protein) diet. Saliva samples were collected both before (Baseline; BL) and after the three-week period (Post treatment; PT) and the oral microbiota profiles for each athlete were produced by 16S rRNA gene amplicon sequencing. Principal coordinates analysis of the oral microbiota profiles based on the weighted UniFrac distance measure did not reveal any specific clustering with respect to diet or athlete ethnic origin, either at baseline (BL) or following the diet-training period. However, discriminant analyses of the oral microbiota profiles by Linear Discriminant Analysis (LDA) Effect Size (LEfSe) and sparse Partial Least Squares Discriminant Analysis (sPLS-DA) did reveal changes in the relative abundance of specific bacterial taxa, and, particularly, when comparing the microbiota profiles following consumption of the carbohydrate-based diets with the LCHF diet. These analyses showed that following consumption of the LCHF diet the relative abundances of and spp. were decreased, and the relative abundance of spp. was increased. Such findings suggest that diet, and, in particular, the LCHF diet can induce changes in the oral microbiota of elite endurance walkers

    Inflammation and Oral Contraceptive Use in Female Athletes Before the Rio Olympic Games

    Get PDF
    This study investigated the association between synthetic ovarian hormone use [i.e., the oral contraceptive (OC) pill] and basal C-reactive protein (CRP), peripheral blood immune cell subsets, and circulating pro- and anti-inflammatory cytokine concentrations in elite female athletes. Elite female athletes (n = 53) selected in Rio Summer Olympic squads participated in this study; 25 were taking an OC (AthletesOC) and 28 were naturally hormonally cycling (AthletesNC). Venous blood samples were collected at rest for the determination of sex hormones, cortisol, CRP, peripheral blood mononuclear memory and naïve CD4+ T-cells, CD8+ T-cells and natural killer cells, as well as pro- and anti-inflammatory cytokine concentrations. C-reactive protein concentrations were elevated (p < 0.001) in AthletesOC (median = 2.02, IQR = 3.15) compared to AthletesNC (median = 0.57, IQR = 1.07). No differences were reported for cortisol, cytokines, or PBMC immune cell subsets, although there was a trend (p = 0.062) for higher IL-6 concentrations in AthletesNC. Female Olympians had substantially higher CRP concentrations, a marker of inflammation and tissue damage, before the Rio Olympic Games if they used an OC. Future research should examine the potential consequences for athlete performance/recovery so that, if necessary, practitioners can implement prevention programs

    Genomewide association study of acute anterior uveitis identifies new susceptibility loci

    Get PDF
    Acknowledgments The authors thank all participating subjects with AS and healthy individuals who provided the DNA and clinical information necessary for this study. We would like to acknowledge the contributions of Anna Deminger, Sahlgrenska Academy at University of Gothenburg, and Urban Hellman, Umeå University, for their assistance in case recruitment and assessment and handling biological samples Funding Information: The survey was conducted by NatCen and the genomewide scan data were analyzed and deposited by the Wellcome Trust Sanger Institute. Information on how to access the data can be found on the Understanding Society website https: www. understandingsociety.ac.uk/ . We acknowledge and thank the TCRA AS Group for their support in recruiting patients for the study. M.A.B. is funded by a National Health and Medical Research Council (Australia) Senior Principal Research Fellowship, and support for this study was received from a National Health and Medical Research Council (Australia) program Grant (566938) and project Grant (569829), and from the Australian Cancer Research Foundation and Rebecca Cooper Medical Research Foundation. We are also very grateful for the invaluable support received from the National Ankylosing Spondylitis Society (UK) and Spondyloarthritis Association of America in case recruitment. Additional financial and technical support for patient recruitment was provided by the National Institute for Health Research Oxford Musculoskeletal Biomedical Research Unit and NIHR Thames Valley Comprehensive Local Research and an unrestricted educational grant from Abbott Laboratories. The authors acknowledge the sharing of data and samples by the BSRBR-AS Register in Aberdeen. Chief Investigator, Prof Gary Macfarlane and Dr Gareth Jones, Deputy Chief Investigator, created the BSRBR-AS study, which was commissioned by the British Society for Rheumatology, funded in part by Abbvie, Pfizer, and UCB. We are grateful to every patient, past and present staff of the BSRBR-AS register team, and to all clinical staff who recruited patients, followed them up and entered data – details here: https://www.abdn.ac.uk/iahs/research/ epidemiology/spondyloarthritis.php#panel1011. Funding was also received from the Swedish Research Council and The Swedish state under the agreement between the Swedish government and the county councils, the ALF agreement. The Irish data was derived from participants in ASRI – The Ankylosing Spondylitis Registry of Ireland, which is funded by unrestricted grants from Abbvie and Pfizer. Funding bodies involved played no role in the study design, performance, or preparation of this manuscript. Funding Information: X.F.H. was funded by the National Natural Science Foundation of China (31771390). The TASC study was funded by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) grants P01-052915, R01-AR046208. Funding was also received from the University of Texas Health Science Center at Houston CTSA grant UL1RR02418, Cedars-Sinai GCRC grant MO1-RR00425, Intramural Research Program, NIAMS/NIH, and Rebecca Cooper Foundation (Australia). This study was funded, in part, by Arthritis Research UK (Grants 19536 and 18797), by the Wellcome Trust (Grant number 076113), and by the Oxford Comprehensive Biomedical Research Centre ankylosing spondylitis chronic disease cohort (Theme Code: A91202). The New Zealand data was derived from participants in the Spondyloarthritis Genetics and the Environment Study (SAGE) and was funded by The Health Research Council, New Zealand. H.X. was funded by the National Natural Science Foundation of China Grant 81020108029 and 30872339. French sample collection was performed by the Groupe Française d’Etude Génétique des Spondylarthrites, coordinated by Professor Maxime Breban, and funded by the Agence Nationale de Recherche GEMISA grant reference ANR-10-MIDI-0002. We acknowledge the Understanding Society: The UK Household Longitudinal Study. This is led by the Institute for Social and Economic Research at the University of Essex and funded by the Economic and Social Research Council. Publisher Copyright: © 2020 Association for Research in Vision and Ophthalmology Inc.. All rights reserved.Peer reviewedPublisher PD

    The role of cytoskeletal tropomyosins in skeletal muscle and muscle disease

    No full text
    Cells contain an elaborate cytoskeleton which plays a major role in a variety of cellular functions including: maintenance of cell shape and dimension, providing mechanical strength, cell motility, cytokinesis during mitosis and meiosis and intracellular transport. The cell cytoskeleton is made up of three types of protein filaments: the microtubules, the intermediate filaments and the actin cytoskeleton. These components interact with each other to allow the cell to function correctly. When functioning incorrectly, disruptions to many cellular pathway have been observed with mutations in various cytoskeletal proteins causing an assortment of human disease phenotypes. Characterization of these filament systems in different cell types is essential to the understanding of basic cellular processes and disease causation. The studies in this thesis are concerned with examining specific cytoskeletal tropomyosin-defined actin filament systems in skeletal muscle. The diversity of the actin filament system relies, in part, on the family of actin binding proteins, the tropomyosins (Tms). There are in excess of forty Tm isoforms found in mammals which are derived from four genes: α, β, γ and δTm. The role of the musclespecific Tms in striated muscle is well understood, with sarcomeric Tm isoforms functioning as part of the thin filament where it regulates actin-myosin interactions and hence muscle contraction. However, relatively little known about the roles of the many cytoskeletal Tm isoforms. Cytoskeletal Tms have been shown to compartmentalise to form functionally distinct filaments in a range of cell types including neurons (Bryce et al., 2003), fibroblasts (Percival et al., 2000) and epithelial cells (Dalby-Payne et al., 2003). Recently it has been shown that cytoskeletal Tm, Tm5NM1 defines a cytoskeletal structure in skeletal muscle called the Z-line associated cytoskeleton (Z-LAC) (Kee et al., 2004).The disruption of this structure by over-expression of an exogenous Tm in transgenic mice results in a muscular dystrophy phenotype, indicating that the Z-LAC plays an important role in maintenance of muscle structure (Kee et al., 2004). In this study, specific cytoskeletal Tms are further investigated in the context of skeletal muscle. Here, we examine the expression, localisation and potential function of cytoskeletal Tm isoforms, focussing on Tm4 (derived from the δ- gene) and Tm5NM1 (derived from the γ-gene). By western blotting and immuno-staining mouse skeletal muscle, we show that cytoskeletal Tms are expressed in a range of muscles and define separate populations of filaments. These filaments are found in association with a number of muscle structures including the myotendinous junction, neuromuscular junction, the sarcolemma, the t-tubules and the sarcoplasmic reticulum. Of particular interest, Tm4 and Tm5NM1 define cytoskeletal elements in association with the saroplasmic reticulum and T-tubules, respectively, with a separation of less than 90 nm between distinct filamentous populations. The segregation of Tm isoforms indicates a role for Tms in the specification of actin filament function at these cellular regions. Examination of muscle during development, regeneration and disease revealed that Tm4 defines a novel cytoskeletal filament system that is orientated perpendicular to the sarcomeric apparatus. Tm4 is up-regulated in both muscular dystrophy and nemaline myopathy and also during induced regeneration and focal repair in mouse muscle. Transition of the Tm4-defined filaments from a predominsnatly longitudinal to a predominantly Z-LAC orientation is observed during the course of muscle regeneration. This study shows that Tm4 is a marker of regeneration and repair, in response to disease, injury and stress in skeletal muscle. Analysis of Tm5NM1 over-expressing (Tm5/52) and null (9d89) mice revealed that compensation between Tm genes does not occur in skeletal muscle. We found that the levels of cytoskeletal Tms derived from the δ-gene are not altered to compensate for the loss or gain of Tm5NM1 and that the localisation of Tm4 is unchanged in skeletal muscle of these mice. Also, excess Tm5NM1 is sorted correctly, localising to the ZLAC. This data correlates with evidence from previous investigations which indicates that Tm isoforms are not redundant and are functionally distinct (Gunning et al., 2005). Transgenic and null mice have also allowed the further elucidation of cytoskeletal Tm function in skeletal muscle. Analyses of these mice suggest a role for Tm5NM1 in glucose regulation in both skeletal muscle and adipose tissue. Tm5NM1 is found to colocalise with members of the glucose transport p fibres and analysis of both transgenic and null mice has shown an alteration to glucose uptake in adipose tissue. Taken together these data indicate that Tm5NM1 may play a role in the translocation of the glucose transport molecule GLUT4. In addition to this Tm5NM1 may play a role in adipose tissue regulation, since over-expressing mice found to have increased white adipose tissue and an up-regulation of a transcriptional regulator of fat-cell formation, PPAR-γ

    Unlocking the Role of Exercise on CD4+ T Cell Plasticity

    No full text
    A hallmark of T cell ageing is a loss of effector plasticity. Exercise delays T cell ageing, yet the mechanisms driving the effects of exercise on T cell biology are not well elucidated. T cell plasticity is closely linked with metabolism, and consequently sensitive to metabolic changes induced by exercise. Mitochondrial function is essential for providing the intermediate metabolites necessary to generate and modify epigenetic marks in the nucleus, thus metabolic activity and epigenetic mechanisms are intertwined. In this perspective we propose a role for exercise in CD4+ T cell plasticity, exploring links between exercise, metabolism and epigenetic reprogramming

    Ethics of genetic testing and research in sport: A position statement from the Australian Institute of Sport

    Get PDF
    As Australia's peak high-performance sport agency, the Australian Institute of Sport (AIS) has developed this position statement to address the implications of recent advances in the field of genetics and the ramifications for the health and well-being of athletes. Genetic testing has proven of value in the practice of clinical medicine. There are, however, currently no scientific grounds for the use of genetic testing for athletic performance improvement, sport selection or talent identification. Athletes and coaches should be discouraged from using direct-to-consumer genetic testing because of its lack of validation and replicability and the lack of involvement of a medical practitioner in the process. The transfer of genetic material or genetic modification of cells for performance enhancement is gene doping and should not be used on athletes. There are, however, valid roles for genetic research and the AIS supports genetic research which aims to enhance understanding of athlete susceptibility to injury or illness. Genetic research is only to be conducted after careful consideration of a range of ethical concerns which include the provision of adequate informed consent. The AIS is committed to providing leadership in delivering an ethical framework that protects the well-being of athletes and the integrity of sport, in the rapidly changing world of genomic science

    Biomedical Risk Factors of Achilles Tendinopathy in Physically Active People: a Systematic Review

    Get PDF
    Abstract Background Achilles tendinopathy is the most prevalent tendon disorder in people engaged in running and jumping sports. Aetiology of Achilles tendinopathy is complex and requires comprehensive research of contributing risk factors. There is relatively little research focussing on potential biomedical risk factors for Achilles tendinopathy. The purpose of this systematic review is to identify studies and summarise current knowledge of biomedical risk factors of Achilles tendinopathy in physically active people. Methods Research databases were searched for relevant articles followed by assessment in accordance with PRISMA statement and standards of Cochrane collaboration. Levels of evidence and quality assessment designation were implemented in accordance with OCEBM levels of evidence and Newcastle-Ottawa Quality Assessment Scale, respectively. Results A systematic review of the literature identified 22 suitable articles. All included studies had moderate level of evidence (2b) with the Newcastle-Ottawa score varying between 6 and 9. The majority (17) investigated genetic polymorphisms involved in tendon structure and homeostasis and apoptosis and inflammation pathways. Overweight as a risk factor of Achilles tendinopathy was described in five included studies that investigated non-genetic factors. COL5A1 genetic variants were the most extensively studied, particularly in association with genetic variants in the genes involved in regulation of cell-matrix interaction in tendon and matrix homeostasis. It is important to investigate connections and pathways whose interactions might be disrupted and therefore alter collagen structure and lead to the development of pathology. Polymorphisms in genes involved in apoptosis and inflammation, and Achilles tendinopathy did not show strong association and, however, should be considered for further investigation. Conclusions This systematic review suggests that biomedical risk factors are an important consideration in the future study of propensity to the development of Achilles tendinopathy. The presence of certain medical comorbidities and genetic markers should be considered when contemplating the aetiology of Achilles tendinopathy. Further elucidation of biomedical risk factors will aid in the understanding of tendon pathology and patient risk, thereby informing prevention and management strategies for Achilles tendinopathy. Trial Registration PROSPERO CRD4201603655
    corecore