9 research outputs found

    The Role of Vascular Resection in Pancreatic Cancer Treatment

    Get PDF
    Currently, porto‐mesenteric vein resection is a standard procedure at high‐volume pancreatic centers. Experience in vascular surgery is indispensable for a modern pancreatic surgeon. Nowadays, only arterial resections still are a controversial issue. Nevertheless, attempts at resection involving reconstruction of the main arteries such as the coeliac axis, hepatic artery, and superior mesenteric artery (SMA) have been reported, although in small case series. An overview of the historical and contemporary methods for surgical management of superior mesenteric/portal vein involvement as well as arterial involvement by pancreatic cancer is presented. We compare the data from the literature with our data based on the examination and long‐term follow‐up of more than 300 radical pancreatic resections. Seventy‐two of the presented patients underwent pancreatic resection with simultaneous vascular resection—SMPV in 65 cases (44 with resection of the portal vein, 15 with resection of the superior mesenteric vein, 6 with resection of the porto‐mesenterial confluence), arterial in 2 and partial resections of IVC in 5 cases. Combined vascular resections were done in three cases. Both groups PVR and PR showed similarly close results in complication rates, mortality, and morbidity. Three and 5 years survival rates were 42 and 38% in PD group and 28 and 19% in the PVR group. The vascular resection must be performed only upon carefully selected patients with data for presence of resectable tumors or tumors with borderline resectability from the preoperative imaging studies. The prompt management of pancreatic cancer with vascular involvement should involve multidisciplinary consultation in high‐volume centers

    COMPARATIVE HEMATOLOGICAL PROFILE OF EXPERIMENTALLY INFECTED WITH TRICHINELLA SPIRALIS, TRICHINELLA BRITOVI AND TRICHINELLA PSEUDOSPIRALIS MICE

    No full text
    The study aimed to observed hematological changes occurring during experimentally induced in-fection with Trichinella spiralis, T. britovi and T. pseudospiralis in mice. We performed hematological blood profile, tracking 15 blood indicators. In statistical analysis made by Two-way ANOVA, there were significant differences of HGB, MCHC, PLT, Lymph%, Gran% in all three types of trichinellosis compared to control animals. Capsule-forming T. spiralis showed statistically significant differences in HGB, MCHC, Lymph % and PLT compared to the other two species. Non capsule-forming T. pseudo-spiralis showed statistically significant differences in Lymph %, Gran % relative to the control and in Gran % relative to T. spiralis

    Antibiofilm poly(carboxybetaine methacrylate) hydrogels for chronic wounds dressings

    No full text
    The current study demonstrates the benefits of poly(carboxybetaine methacrylate) hydrogels in chronic wound healing. These hydrogels demonstrate high absorbing capacity upon swelling in salt solutions thus revealing great potential as dressings for highly exuding chronic wounds. Moreover, upon swelling they expand, increasing their volume by 25%, which makes them patient friendly ensuring also the proper wound healing. Poly(carboxybetaine methacrylate) hydrogels were also shown to absorb collagenase and myeloperoxidase, two enzymes that are specific for chronic wounds, reducing in this way their amount by 30-45 % in the wound bed without entirely inhibiting their activity, as the latter is necessary for the wound healing process. The hydrogels were also shown to be non-cytotoxic as well as to prevent the biofilm formation of S. Aureus. The in vivo implantation in rats showed no immune response to moderate immune reaction for both studied PCB hydrogels. Thus, the properties of the PCB networks revealed in the study demonstrate their potential as chronic wounds dressing materials.Peer ReviewedPostprint (author's final draft

    Hemocyanins from Helix and Rapana Snails Exhibit in Vitro Antitumor Effects in Human Colorectal Adenocarcinoma

    No full text
    Hemocyanins are oxygen-transporting glycoproteins in the hemolymph of arthropods and mollusks that attract scientific interest with their diverse biological activities and potential applications in pharmacy and medicine. The aim of the present study was to assess the in vitro antitumor activity of hemocyanins isolated from marine snail Rapana venosa (RvH) and garden snails Helix lucorum (HlH) and Helix aspersa (HaH), as well the mucus of H. aspersa snails, in the HT-29 human colorectal carcinoma cell line. The effects of the hemocyanins on the cell viability and proliferation were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the alterations in the tumor cell morphology were examined by fluorescent and transmission electron microscopy. The results of the MTT assay showed that the mucus and α-subunit of hemocyanin from the snail H. aspersa had the most significant antiproliferative activity of the tested samples. Cytomorphological analysis revealed that the observed antitumor effects were associated with induction of apoptosis in the tumor cells. The presented data indicate that hemocyanins and mucus from H. aspersa have an antineoplastic activity and potential for development of novel therapeutics for treatment of colorectal carcinoma

    Resection and reconstruction of the inferior vena cava for neoplasms

    No full text
    AIM: To evaluate the results of an aggressive surgical approach of resection and reconstruction of the inferior vena cava (IVC)

    Effects of Salinomycin and Deferiprone on Lead-Induced Changes in the Mouse Brain

    No full text
    Lead (Pb) is a highly toxic heavy metal that has deleterious effects on the central nervous system. This study aimed to investigate the effects of salinomycin (Sal) and deferiprone (DFP) on brain morphology and on the content of some essential elements in Pb-exposed mice. Adult male Institute of Cancer Research (ICR) mice were exposed to a daily dose of 80 mg/kg body weight ( b.w.) Pb(II) nitrate for 14 days and subsequently treated with Sal (16 mg/kg b.w.) or DFP (19 mg/kg b.w.) for another 14 days. At the end of the experimental protocol, the brains were processed for histological and inductively coupled plasma mass spectrometry (ICP-MS) analyses. Pb exposure resulted in a 50-fold increase in Pb concentration, compared with controls. Magnesium (Mg) and phosphorus (P) were also significantly increased by 22.22% and 17.92%, respectively. The histological analysis of Pb-exposed mice revealed brain pathological changes with features of neuronal necrosis. Brain Pb level remained significantly elevated in Sal- and DFP-administered groups (37-fold and 50-fold, respectively), compared with untreated controls. Treatment with Sal significantly reduced Mg and P concentrations by 22.56% and 18.38%, respectively, compared with the Pb-exposed group. Administration of Sal and DFP ameliorated brain injury in Pb-exposed mice and improved histological features. The results suggest the potential application of Sal and DFP for treatment of Pb-induced neurotoxicity

    Comparative Effects of Deferiprone and Salinomycin on Lead-Induced Disturbance in the Homeostasis of Intrarenal Essential Elements in Mice

    No full text
    Lead (Pb) exposure induces severe nephrotoxic effects in humans and animals. Herein, we compare the effects of two chelating agents, salinomycin and deferiprone, on Pb-induced renal alterations in mice and in the homeostasis of essential elements. Adult male mice (Institute of Cancer Research (ICR)) were randomized into four groups: control (Ctrl)—untreated mice administered distilled water for 28 days; Pb-exposed group (Pb)—mice administered orally an average daily dose of 80 mg/kg body weight (BW) lead (II) nitrate (Pb(NO3)2) during the first two weeks of the experimental protocol followed by the administration of distilled water for another two weeks; salinomycin-treated (Pb + Sal) group—Pb-exposed mice, administered an average daily dose of 16 mg/kg BW salinomycin for two weeks; deferiprone-treated (Pb + Def) group—Pb-exposed mice, administered an average daily dose of 20 mg/kg BW deferiprone for 14 days. The exposure of mice to Pb induced significant accumulation of the toxic metal in the kidneys and elicited inflammation with leukocyte infiltrations near the glomerulus. Biochemical analysis of the sera revealed that Pb significantly altered the renal function markers. Pb-induced renal toxicity was accompanied by a significant decrease in the endogenous renal concentrations of phosphorous (P), calcium (Ca), copper (Cu) and selenium (Se). In contrast to deferiprone, salinomycin significantly improved renal morphology in Pb-treated mice and decreased the Pb content by 13.62% compared to the Pb-exposed group. There was also a mild decrease in the renal endogenous concentration of magnesium (Mg) and elevation of the renal concentration of iron (Fe) in the salinomycin-treated group compared to controls. Overall, the results demonstrated that salinomycin is a more effective chelating agent for the treatment of Pb-induced alterations in renal morphology compared to deferiprone
    corecore