73 research outputs found

    Research of the thorium purification at monazite refinement processes

    Get PDF
    This paper is aimed to the research of the thorium purification processes at monazite refinement processes. We have investigated different solution containing thorium with different mix of rare-earth elements. It was found that the application of cation resin is well- recommended if we want to reach the highest yields of thorium purification process

    Cantor and band spectra for periodic quantum graphs with magnetic fields

    Full text link
    We provide an exhaustive spectral analysis of the two-dimensional periodic square graph lattice with a magnetic field. We show that the spectrum consists of the Dirichlet eigenvalues of the edges and of the preimage of the spectrum of a certain discrete operator under the discriminant (Lyapunov function) of a suitable Kronig-Penney Hamiltonian. In particular, between any two Dirichlet eigenvalues the spectrum is a Cantor set for an irrational flux, and is absolutely continuous and has a band structure for a rational flux. The Dirichlet eigenvalues can be isolated or embedded, subject to the choice of parameters. Conditions for both possibilities are given. We show that generically there are infinitely many gaps in the spectrum, and the Bethe-Sommerfeld conjecture fails in this case.Comment: Misprints correcte

    Computational Prediction of Heme-Binding Residues by Exploiting Residue Interaction Network

    Get PDF
    Computational identification of heme-binding residues is beneficial for predicting and designing novel heme proteins. Here we proposed a novel method for heme-binding residue prediction by exploiting topological properties of these residues in the residue interaction networks derived from three-dimensional structures. Comprehensive analysis showed that key residues located in heme-binding regions are generally associated with the nodes with higher degree, closeness and betweenness, but lower clustering coefficient in the network. HemeNet, a support vector machine (SVM) based predictor, was developed to identify heme-binding residues by combining topological features with existing sequence and structural features. The results showed that incorporation of network-based features significantly improved the prediction performance. We also compared the residue interaction networks of heme proteins before and after heme binding and found that the topological features can well characterize the heme-binding sites of apo structures as well as those of holo structures, which led to reliable performance improvement as we applied HemeNet to predicting the binding residues of proteins in the heme-free state. HemeNet web server is freely accessible at http://mleg.cse.sc.edu/hemeNet/

    New Synthetic Thrombin Inhibitors: Molecular Design and Experimental Verification

    Get PDF
    BACKGROUND: The development of new anticoagulants is an important goal for the improvement of thromboses treatments. OBJECTIVES: The design, synthesis and experimental testing of new safe and effective small molecule direct thrombin inhibitors for intravenous administration. METHODS: Computer-aided molecular design of new thrombin inhibitors was performed using our original docking program SOL, which is based on the genetic algorithm of global energy minimization in the framework of a Merck Molecular Force Field. This program takes into account the effects of solvent. The designed molecules with the best scoring functions (calculated binding energies) were synthesized and their thrombin inhibitory activity evaluated experimentally in vitro using a chromogenic substrate in a buffer system and using a thrombin generation test in isolated plasma and in vivo using the newly developed model of hemodilution-induced hypercoagulation in rats. The acute toxicities of the most promising new thrombin inhibitors were evaluated in mice, and their stabilities in aqueous solutions were measured. RESULTS: New compounds that are both effective direct thrombin inhibitors (the best K(I) was <1 nM) and strong anticoagulants in plasma (an IC(50) in the thrombin generation assay of approximately 100 nM) were discovered. These compounds contain one of the following new residues as the basic fragment: isothiuronium, 4-aminopyridinium, or 2-aminothiazolinium. LD(50) values for the best new inhibitors ranged from 166.7 to >1111.1 mg/kg. A plasma-substituting solution supplemented with one of the new inhibitors prevented hypercoagulation in the rat model of hemodilution-induced hypercoagulation. Activities of the best new inhibitors in physiological saline (1 µM solutions) were stable after sterilization by autoclaving, and the inhibitors remained stable at long-term storage over more than 1.5 years at room temperature and at 4°C. CONCLUSIONS: The high efficacy, stability and low acute toxicity reveal that the inhibitors that were developed may be promising for potential medical applications

    Common eigenvalue problem and periodic Schrödinger operators

    Get PDF
    AbstractLet A be a subset of the family of all self-adjoint extensions of a symmetric operator A0 with equal deficiency indices in a Hilbert space. Assuming that A0 has a purely residual spectrum we describe the set of eigenvalues common to all self-adjoint extensions from A. This abstract result is used to show that the one-dimensional periodic Schrödinger operator with local point interactions is absolutely continuous

    Main routes of ethanol conversion under aerobic/anaerobic conditions over ag-containing zirconium phosphate catalyst

    No full text
    Background: Double metal phosphates, such as silver- and copper-zirconium phosphates, are considered promising materials for alcohol transformation to high-value chemicals (aldehydes, esters, olefins) due to high functional properties

    Main routes of ethanol conversion under aerobic/anaerobic conditions over ag-containing zirconium phosphate catalyst

    No full text
    Background: Double metal phosphates, such as silver- and copper-zirconium phosphates, are considered promising materials for alcohol transformation to high-value chemicals (aldehydes, esters, olefins) due to high functional properties
    corecore