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Let A be a subset of the family of all self-adjoint extensions of a symmetric
operator A0 with equal deficiency indices in a Hilbert space. Assuming that A0 has
a purely residual spectrum we describe the set of eigenvalues common to all
self-adjoint extensions from A. This abstract result is used to show that the one-
dimensional periodic Schro� dinger operator with local point interactions is
absolutely continuous. � 1999 Academic Press
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1. INTRODUCTION

The aim of the paper is to propose a new point of view on the spectral
theory of periodic differential operators. For the sake of illustration
consider a simple example��the Schro� dinger operator H=&d 2�dx2+V in
L2(R) with a periodic real-valued potential V(x)=V(x+2?), x # R. The
spectral analysis of H is based on the Floquet decomposition (see [16]).
The essence of this method is that the spectrum of H can be recovered from
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the spectra of the family of self-adjoint operators H(k)=&d 2�dx2+V,
k # [0, 1), acting in L2(0, 2?), with the quasi-periodic boundary conditions

u(2?)=ei2?ku(0), u$(2?)=ei2?ku$(0).

The parameter k is called the quasi-momentum. Denote by El (k) the eigen-
values of the operator H(k). Then the spectrum of the initial operator H
is given by the union of spectral bands:

_(H )=.
l

Il , Il= .
k # [0, 1)

El (k).

Similar representation holds for the multi-dimensional analog &2+V of
H, when the quasi-momentum k is vector-valued. If one of the functions
El ( } ) is constant in k, then the corresponding band degenerates into a
point, which represents an eigenvalue of H. A central issue in the spectral
theory of periodic problems is to find out whether such a degeneration
really occurs for a given operator.

In the case of the operator H=&d 2�dx2+V one can show, using ODE
methods, that the eigenvalues El (k) are analytic in k and there are no
constants among them (see [16]). This implies that H is absolutely
continuous. In the multi-dimensional case the standard (and the only)
approach to absolute to absolute continuity is due to L. E. Thomas (see
[17] and also [16]). The key idea is to check, using the analytic perturbation
theory, that the eigenvalues El cannot be constant when one extends the
operator to the complex plane in one of the components of the quasi-
momentum k.

In this paper, instead of the analytic perturbation technique, we propose
a different point of view. We regard the operators H(k) as a family of self-
adjoint extensions of the symmetric operator A0=&d 2�dx2+V initially
defined on the H2-functions with the boundary conditions u(0)=u(2?)=
u$(0)=u$(2?)=0. Now the fact that El (k) are non-constant can be inter-
preted as the absence of eigenvalues common to all H(k), k # [0, 1). Having
in mind applications to more general periodic operators, it is natural and
useful to study common eigenvalues in the abstract setting. Namely, we
start off with a symmetric operator A0 in a Hilbert space H with purely
residual spectrum, i.e., with _r(A0)=C. Then its deficiency indices are
automatically equal: n+=n&=n. Next we pick a subset A of the family of
all self-adjoint extensions of A0 and describe the set

7p=7p(A)= ,
A # A

_p(A)

of common eigenvalues for the family A (see Theorem 3.6). To that end we
make systematic use of the formalism of the boundary value space (BVS).
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Essentially, this notion is based on an abstract version of Green's formula
(see (2.1)) for the operator A0*. The BVS technique associates to every self-
adjoint extension A a unique unitary operator U=UA acting in an
auxiliary Hilbert space h of dimension n, which can be interpreted as the
space of ``boundary values'' of the elements of the domain D(A0*). One can
always take h=ker(A0*+i), but the choice of h is not unique and as a rule
it is more convenient to use a different realization of h. For instance, in the
case n # N one can assume that h=Cn. In general the construction of a
suitable BVS for a given symmetric operator may present an independent
difficult problem (see [8]). The crucial point is that the spectral properties
of A can be described in terms of those of the corresponding operator U
and the characteristic function of the operator A0 (see Theorem 3.1). This
property constitutes the basis of our approach.

The boundary value space technique has been extensively used in the
works of Soviet mathematicians since the 70's for investigating the spectral
properties of ordinary and partial differential operators. However the idea
to select self-adjoint extensions of symmetric operators by imposing
``boundary conditions'' was proposed much earlier by J. W. Calkin in [6]
(see also [7]). Apparently the progress made in the Soviet School has not
been widely known in the West partly because the relevant bibliography is
not easy to find. Thus, to facilitate the reading and to make the paper self-
contained, some results, that are available in the Soviet mathematical
literature, are given with full proofs. At the same time we do not provide
detailed bibliographical comments, but rather refer to the book [8] for a
comprehensive account of the subject.

In this paper, we use our approach to analyze the spectrum of the
one-dimensional periodic Schro� dinger operator with local point interac-
tions (see Section 4). Our motivation is two-fold: firstly, this operator is
convenient for illustration of our method in view of its relative simplicity.
Secondly, this problem seems to be worth studying, since the spectral
properties of operators with point interactions have been intensively
investigated in the literature (see [1], [15] and references therein). In
particular, the operator with equidistant periodic $- and $$-interactions
with V=0 was shown to be absolute continuous. Our method allows us to
consider the most general local point interactions, not necessarily equidis-
tant, with a periodic potential V # L1

loc(R). However, to avoid cumbersome
technicalities we assume in this paper that V # L2

loc(R). In contrast to $- or
$$-interactions, in the general case the operator may break up in the infinite
orthogonal sum of independent operators with discrete spectrum. In this
case due to the periodicity the spectrum of the full operator consists of
isolated eigenvalues of infinite multiplicity. If such a decoupling does not
occur, we prove, relying upon the abstract results on common eigenvalues
from Section 3, that the spectrum is absolutely continuous.
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We believe that our approach can be also applied to higher order
ordinary differential operators without any conceptual difficulties. However
the multi-dimensional case apparently will contain much more serious
obstructions.

2. BOUNDARY VALUE SPACE

2.1. Boundary Value Space and Self-adjoint Extensions

Here we provide general definitions and information on the boundary
value space of a symmetric operator. Most of the results quoted in this
subsection can be found in [8].

Below we systematically use the following notation.
We denote by H the underlying complex Hilbert space. Lower and

upper case gothic letters denote various auxiliary Hilbert spaces: h, g, H.
To distinguish scalar products in distinct spaces we use the subscripts:
( } , } )H , ( } , } )h etc, & f &=- ( f, f )H . None of the above spaces is assumed
to be separable. Throughout the paper we repeatedly use the fact that two
Hilbert spaces have the same dimension if they are linearly homeomorphic.

The symbols ``+4 '' and ``�'' denote the direct and orthogonal sums
respectively. The writing T : h � g means that T is a bounded operator
acting between the Hilbert spaces h, g.

Everywhere below A0 denotes a densely defined closed symmetric
operator in the space H with equal (finite or infinite) deficiency indices.

Definition 2.1. Let h be a complex Hilbert space and let 11 , 12 be
two linear mappings from D(A0*) into h. The triple (h, 11 , 12) is called
a boundary value space (BVS) of the operator A0 if the following two
conditions are satisfied:

1. For any f, g # D(A0*)

(A0* f, g)H &( f, A0* g)H =(11 f, 12 g)h &(12 f, 11 g)h ; (2.1)

2. For any F1 , F2 # h there is an f # D(A0*) such that 11 f =F1 ,
12 f =F2 .

Note that (2.1) can be also rewritten in a different form:

2i[(A0* f, g)H &( f, A0* g)H ]

=((11&i12) f, (11&i12) g)h &((11+i12) f, (11+i12) g)h , (2.2)

which will be used later on.
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The next proposition proclaims the existence of a BVS:

Proposition 2.2. For any densely defined closed symmetric operator
with equal deficiency indices (n, n) there exists a BVS (h, 11 , 12) with
dim h=n.

The proof of this Proposition (see e.g. [8]) is constructive. In particular,
it shows that ker(A0*+i) can be viewed as the space h if one chooses
appropriately the mappings 11 and 12 . We emphasize however that the
choice of a BVS is not unique.

Below we list without proofs some useful properties of the operators 11 , 12 :

v An element f belongs to D(A0) if and only if 11 f =12 f =0;

v The operators 11 , 12 are bounded as mappings from the space
D(A0*) equipped with the graph scalar product (A0*u, A0*v)H +(u, v)H ;

v The operators 11 and 12 induce continuous bijections

11 �12 : D(A0*)�D(A0) � h�h,

11\i12 : D(A0*)�D(A0) � h.

Using the last property we conclude that for any two BV spaces (h, 11 , 12)
and (g, 51 , 52) associated with the given operator A0 we have
dim h=dim g.

Since the deficiency indices of the operator A0 are equal, it admits
self-adjoint extensions. Using a BVS for A0 we can actually establish a
one-to-one correspondence between the elements A of the collection of all
self-adjoint extensions S and the set of unitary operators in the space h.
Namely, for a unitary operator U : h � h denote by D(A0*, U )/D(A0*) the
subset of all vectors f # D(A0*) such that

U(11+i12) f=(11&i12) f. (2.3)

Clearly D(A0* , U ) is dense in H for D(A0)/D(A0*, U ). Observe that for
any f, g # D(A0* , U) the r.h.s. of (2.2) equals zero. Moreover, the following
Proposition holds:

Proposition 2.3. Let (h, 11 , 12) be a BVS for the operator A0 , and let
U be a unitary operator in the space h. Then the restriction of A0* on the set
D(A0*, U ) defines a self-adjoint extension of A0 .

Conversely, for any self-adjoint extension A of the operator A0 there exists
a unique unitary operator U acting in h such that D(A)=D(A0*, U ).

From now on we sometimes use the notation AU for a self-adjoint exten-
sion of the operator A0 corresponding to the unitary operator U : h � h. In
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this case we say that U parametrizes A in the BVS (h, 11 , 12). For any set
A of self-adjoint extensions of A we denote by UA the family of unitary opera-
tors in h parametrizing the elements A # A. Similarly, the unitary operator
parametrizing given self-adjoint extension A # S will be denoted by UA .

2.2. Linear-Fractional Transformation and Parametrization

As it was pointed out above, a construction procedure for a BVS is not
unique. Let (h, 11 , 12) and (g, 51 , 52) be two distinct BV spaces associated
with a closed symmetric operator A0 . We shall show that the unitary
operators UA and WA parametrizing an operator A # S in the BV spaces
(h, 11 , 12) and (g, 51 , 52) respectively, are related by a so-called linear-
fractional transformation. To do so we shall need first of all the notion of
a J-unitary operator. Introduce in H=h�h the operator

J=\I
0

0
&I+ . (2.4)

An operator T acting in H is said to be J-unitary if

(JX, X� )H =(JTX, TX� )H (2.5)

for any X, X� # H, and ran T=H. It is known (see e.g. [3]) that T is
bounded and therefore can be represented as follows:

T=\T11

T21

T12

T22+
with bounded blocks Tjk : h � h. It is easy to see that along with T the
operator (JT)* is also J-unitary. Each J-unitary operator gives rise to a
linear-fractional transformation described in the next theorem:

Theorem 2.4. Let T be a J-unitary operator and U be an arbitrary
unitary operator in h. Then

1. The operators T11+T12U, T21+T22U and T22&UT12 , T21&UT11

are boundedly invertible;

2. The transformation

0(U )=0(U, T)=[T21+T22 U][T11+T12 U]&1 (2.6)

maps the set of unitary operators in h into itself:
3. The mapping

0*(U )=&0(U, (JT)*)=&[T*12&T*22U][T*11&T*21U]&1 (2.7)

155COMMON EIGENVALUE PROBLEM



is the inverse to 0, i.e.

0(0*(U ))=0*(0(U ))=U. (2.8)

4. For any two unitary operators U, W in h the equality takes place:

dim ker(U&W )=dim ker(0(U )&0(W )). (2.9)

The proof is postponed until the Appendix.
Since dim h=dim g, one can find an isometric map V : g � h. As the next

theorem shows, the correspondence between U=UA and W=WA is
completely determined by the choice of such a map.

Theorem 2.5. Let (h, 11 , 12), (g, 51 , 52) be two BV spaces of a given
operator A0 , and let V be an isometric map from g onto h. Then there exists
a J-unitary operator T acting in H=h�h such that for any self-adjoint
extension A

UA=0(VWA V*), (2.10)

with the transformation 0 defined in (2.6).

Proof. Along with the BVS (h, 11 , 12) define a new BVS (h, 1� 1 , 1� 2)
with 1� j=V5j , j=1, 2. To construct the operator T associate to every
X=(x$, x") # H a vector z # D(A0*) such that

(1� 1+i1� 2) z=x$, (1� 1&i1� 2) z=x".

Set Y=( y$, y") with

(11+i12) z= y$, (11&i12) z= y".

For a given X these relations define Y uniquely. Define the operator T to
be the linear operator transforming X into Y. Obviously ran T=H.
Moreover, in view of (2.2) for any X, X� # H and Y=TX, Y� =TX� one has

(x$, x~ $)h &(x", x~ ")h =( y$, y~ $)h &( y", y~ ")h .

This implies that

(JX, X� )H =(JTX, TX� )H ,

so that T-is J-unitary. Using the entries Tjk of T one can express 11 , 12

in terms of 1� 1 , 1� 2 :

11+i12 =T11(1� 1+i1� 2)+T12(1� 1&i1� 2);

11&i12=T21(1� 1+i1� 2)+T22(1� 1&i1� 2).
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Let U� be the unitary operator parametrizing A in the BVS (h, 1� 1 , 1� 2).
Thus by (2.3)

(1� 1&i1� 2) f=U� (1� 1+i1� 2) f

for all f # D(A), which ensures that

(11+i12) f=(T11+T12 U� )(1� 1+i1� 2) f,

(11&i12) f =(T21+T22 U� )(1� 1+i1� 2) f.

According to definition (2.6) this implies that

(11&i12) f=0(U� )(11+i12) f

with the unitary operator 0( } ) defined in (2.6). By (2.3) this means that
0(U� ) parametrizes the operator A in the BVS (h, 11 , 12). In view of
Proposition 2.3 a parametrizing operator is unique, so that U=0(U� ).
Noticing that U� =VWV*, we arrive at (2.10). K

Corollary 2.6. Let V : g � h be an isometric map, and let U=UA and
M=MA be the sets of unitary operators parametrizing the family A/S in
the BV spaces (h, 11 , 12) and (g, 51 , 52) respectively. Then the transformation
(2.10) defines a bijection of M onto U.

3. COMMON EIGENVALUE PROBLEM

3.1. Characteristic Function

In this subsection we investigate self-adjoint extensions of a regular sym-
metric operator A0 , i.e., an operator A0 with _r(A0)=C. This property is
equivalent to the fact that for any * # R there is a positive constant c=c*

such that

&(A0&*) f &�c* & f &, \f # D(A0). (3.1)

This requirement implies in particular that the operator A0 has no eigen-
values and is simple. Recall that a symmetric operator A0 is said to be
simple if for any decomposition

A0=A1
0 �A2

0 (3.2)

the operators A1
0 , A2

0 are not self-adjoint.

157COMMON EIGENVALUE PROBLEM



Among all self-adjoint extensions we single out the following one-
parameter set. For any * # R define the extension A(*) to be a restriction
of the operator A0* on the domain

D(A(*))=D(A0)+4 ker(A0*&*).

Using (3.1) one can show (see e.g. [10]) that A(*) # S. The extensions
A(*) were introduced by J. von Neumann in [14]. They are fundamental
for the Krein's theory of semi-bounded extensions of symmetric operators
(see [12], [2]).

The unitary operator U : h � h parametrizing A(*) will be denoted by
U(*). We shall call U(*) the characteristic function of the regular symmetric
operator A0 associated with the BVS (h, 11 , 12). Note that a self-adjoint
extension A of the operator A0 coincides with A(*) for some * # R if and
only if

ker(A&*)=ker(A0*&*).

The special role of the characteristic function is seen from the following
result which was establish essentially in [10] (see also [11]).

Theorem 3.1. A number *0 # R is an eigenvalue of the operator AU of
multiplicity m if and only if the point +=0 is an eigenvalue of the operator
U&U(*0) of the same multiplicity.

For the sake of completeness we provide the proof.

Proof. We shall show that the map 11+i12 is a homeomorphism of
ker(A&*0) onto ker(U&U(*0)).

In view of (3.1) every element f # ker(A&*0) belongs to ker(A0*&*0)/
D(A(*0)), and therefore

U(*0)(11+i12) f=(11&i12) f.

On the other hand by (2.3) the element f obeys the relation

U(11+i12) f=(11&i12) f. (3.3)

The last two equalities imply that g=(11+i12) f # ker(U&U(*0)).
Moreover, since 11+i12 is invertible on D(A0*)�D(A0), the mapping f � g
is an injection.

Conversely, let g # ker(U&U(*0)). Then by Definition 2.1 one can find a
vector f� # D(A0*) such that

(11+i12) f� = g, (11&i12) f� =Ug.
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Thus (3.3) is fulfilled which implies that f� # D(A). Moreover,

U(*0)(11+i12) f� =U(*0) g=Ug=(11&i12) f� ,

so that f� # D(A(*0))=D(A0)+4 ker(A0*&*0) as well. Let f be the projection
of f� on ker(A0*&*0). Then (11+i12) f= g.

Therefore the mapping 11+i12 : ker(A&*0) � ker(U&U(*0)) is an
injection and surjection at the same time.

To prove the continuity of 11+i12 it suffices to recall that this map is
continuous on D(A0*) equipped with the graph-norm of A0* , and to notice
that the graph-norm is equivalent to the ordinary norm on ker(A&*0) for
any *0 # R. K

This result will play a crucial role in the next subsection.
Without going into details note that there are several definitions for the

characteristic function of an arbitrary symmetric operator with equal
deficiency indices (see [11] and references therein). The closest to our
definition is the one given in [11].

3.2. Common Eigenvalues

Let A0 be a regular symmetric operator. Let A/S be a non-empty sub-
set. Our objective is to describe the set of common eigenvalues of the family
A, i.e.

7p=7p(A)= ,
A # A

_p(A).

Note that for a non-simple symmetric operator A0 the presence of eigen-
values common to all A # A may be due to the existence of eigenvalues of
the relevant self-adjoint part of A0 , i.e., A1

0 or A2
0 in the decomposition

(3.2). However, we always assume that A0 is regular, and consequently
simple. Therefore such ``trivial'' common eigenvalues are ruled out.

If n # N the operators from S have purely discrete spectrum. If n � N
then S always contains operators with non-empty essential spectrum.

To describe 7p in terms of the characteristic function introduce the
following

Definition 3.2. Let U, Ud be two sets of unitary operators in h, the set
U being non-empty. Then Ud is said to be dual to U if

Ud=[W : ker(W&U ){[0], \U # U].

In view of Theorem 3.1 this definition immediately leads to the formula

7p(A)=[* # R : U(*) # Ud
A ]. (3.4)
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This formula has a drawback: it contains an object��Ud
A ��which depends

on the choice of a BVS. To remedy this we extend the notion of duality to
the class S:

Definition 3.3. Let A, Ad be two sets of self-adjoint operators in S, A
being non-empty. Then Ad is said to be dual to A if

UAd=Ud
A ,

or, in other words,

Ad=[AW # S : W # Ud
A ]. (3.5)

Let us show that the duality in S is indeed invariant with respect to the
choice of a BVS for the initial symmetric operator. To this end we first
prove a statement analogous to Corollary 2.6:

Lemma 3.4. Let V : g � h be an isometric map, and let U=UA and
M=MA be the sets of unitary operators parametrizing the family A/S in
the BV spaces (h, 11 , 12) and (g, 51 , 52) respectively. Then the transformation
U=0(VWV*) defines a bijection of Md onto Ud.

Proof. Applying (2.9) to 0 and 0* we obtain that

dim ker(U&U$)=dim ker(V*0*(U ) V&V*0*(U$) V),
(3.6)

dim ker(W&W$)=dim ker(0(VWV*)&0(VW$V*))

for any unitary U, U$ and W, W$ acting in the spaces h and g respectively.
According to part 3 of Theorem 2.4 the transformations 0 and 0* are
mutually inverse. Thus in view of Corollary 2.6 the equalities (3.6) mean
that the inclusions U # Ud, W # Md imply the inclusions V*0*(U ) V # Md,
0(VWV*) # Ud. Using (2.8) again these relations lead to the required
conclusion. K

This lemma in combination with Theorem 2.5 shows that the dual family
(3.5) does not depend on the choice of a BVS. With the help of this family
one can give another description of the set 7p , which immediately follows
from (3.4):

7p(A)=[* : A(*) # Ad]. (3.7)

For the use in the next section we shall rephrase this statement in terms of
the eigenvalues.

Definition 3.5. A number *0 is called an eigenvalue of the maximal
multiplicity of the operator A # S if A=A(*0). The set of all eigenvalues of
maximal multiplicity of the operator A is denoted by _max(A).
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If the deficiency indices of A0 are equal to n # N then for any self-adjoint
extension A the set _max(A) coincides with the set of all eigenvalues of
multiplicity n.

It is now easy to conclude that

7p(A)= ,
A # Ad

_max(A). (3.8)

Note that in contrast to (3.4) this formula does not contain the charac-
teristic function of the operator A0 , which is, as a rule, difficult to find.

Let us summarize what has been done in this section:

Theorem 3.6. Let A/S be a non-empty family of self-adjoint exten-
sions of a regular symmetric operator A0 in the Hilbert space H. Let Ud

A

and Ad be the dual sets as defined above. Then the set 7p(A) of common
eigenvalues of the family A can be found by any of the three formulae (3.4),
(3.7), or (3.8).

This theorem allows us to give another interpretation of the known fact
that if n=1 and card A�2, then 7p(A)=< (see e.g. [4]). Indeed, accord-
ing to Propositions 2.2 and 2.3 all self-adjoint extensions of the operator A0

can be parametrized by unitary operators in a one-dimensional space, i.e.,
by numbers , # [0, 2?). In case if A contains more than one extension, the
corresponding numbers , are all distinct, and therefore the class Ud is
empty, and hence 7p=<.

4. PERIODIC SCHRO� DINGER OPERATORS

4.1. Schro� dinger Operators with Point Interactions

We are interested in spectral properties of the Schro� dinger operators in
L2(R) having the form &d 2�dx2+V, with some boundary conditions on a
discrete set of points in R. Such operators are called in [5] the operators
with local point interactions.

Let X=[xj], j=1, 2, ..., N be a finite collection of distinct points on the
interval (0, 2?) enumerated in the increasing order. Define the infinite
sequence of points Y=[ yj], j # Z by setting

yj+nN=xj+2?n, j=1, 2, ..., N, n # Z.

The domain of the operator will be defined by boundary conditions
relating the values u( yj &), u$( yj &) and u( yj+), u$( yj+). As in [5] we
give the appropriate definitions in terms of unitary 2_2 matrices Mj

associated with the points yj :
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Definition 4.1. Let the interval 2 be either R or [0, 2?) and let M be
a collection of unitary 2_2-matrices M j , j # Z. A function u # H2(2"Y ) is
said to belong to the class B(2) if it obeys the following condition:

\u( yj+)&iu$( yj+)
u( yj&)+iu$( yj &)+=M j \u( yj &)&iu$( y j&)

u( yj+)+iu$( yj +)+ (4.1)

for any j such that yj # 2.

Although the functions u # B(2) are allowed to have discontinuities at
the points yj # 2, the unitary of Mj ensures that the bracket

[u, v](x)=u(x) v$(x)&u$(x) v(x)

is continuous everywhere for any two functions u, v # B(2). Indeed, denote
by u+

&( yj) and u&
+( y j) the 2-vectors in the l.h.s. and the r.h.s. of the equality

(4.1) respectively. Then

2([u, v]( yj +)&[u, v]( yj &))

=i(u&
+( yj), v&

+( yj))C2&i(u+
&( yj), v+

&( yj))C2

=i(Mj u&
+( yj), Mjv&

+( yj))C2&i(u+
&( yj), v+

&( yj))C2=0. (4.2)

We also point out that the boundary condition (4.1) at each point yj can
be of two types depending on the entries of the matrix Mj :

Mj=\m11

m21

m12

m22+
(here we omit the subscript j to avoid cumbersome notation). Due to the
unitarity of Mj the coefficients m11 , m22 both either equal zero or are
distinct from zero. In the latter case the requirement (4.1) establishes a
one-to-one correspondence between u( yj &), u$( yj &) and u( yj +),
u$( yj +). In this case, following [5] we shall call the boundary condition
(4.1) connecting. If m11=m22=0 then the values of u( yj&), u$( yj &) and
u( yj +), u$( yj +) are independent. More precisely, under this condition
m12=e2i%+, m21=e2i%& with some %\ # [0, ?), and (4.1) reads as

sin %+ u( yj +)+cos %+ u$( yj+)=0,

sin %& u( yj &)&cos %t u$( yj&)=0.

In this case it is natural to say that the boundary condition at yj is decoupling.
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As was mentioned in the Introduction, the $- or $$-interactions are
special cases of the condition (4.1). For example the matrix

Mj=e&i% \ cos %
&i sin %

&i sin %
cos % + , % # \&

?
2

,
?
2+ ,

realizes a $-interaction of ``strength'' 2 tan % at the point yj .
Let us now define the Schro� dinger operators we shall be working with.

To begin with, we are interested in periodic operators, so that the matrices
Mj # M are supposed to satisfy the periodicity condition

Mj=Mj+nN , \j, n # Z. (4.3)

Further, let V # L2
loc(R) be a real-valued periodic function with the period

2?. Let H be the operator in L2(R) defined as

Hu=H0u+Vu, H0 u=&u", (4.4)

on the domain D(H )=B(R). Using the property that infj | yj+1& yj |>0,
it is quite straightforward to check that H0 is self-adjoint on this domain.
The perturbation V is infinitesimally small with respect to H0 , which
guarantees the self-adjointness of H on D(H ) and essential self-adjointness
of H on any core domain of H0 .

It is interesting to remark that in contrast to ordinary Sturm�Liouville
problems and problems with $-, $$-interactions, the domains of operators
with general local point interactions are not invariant under the complex
conjugation u � u� .

The spectrum of H strongly depends on the boundary conditions (4.1).
If at least one of them is decoupling, let us say, at x1 , then the operator
H splits into the infinite orthogonal sum of Sturm�Liouville type operators
Hl=&d 2�dx2+V acting on the intervals (x1+2?l, x1+2?(l+1)), l # Z.
Due to periodicity of V and Mj the spectra _(Hl) all coincide. Consequently
the spectrum of H consists of isolated eigenvalues of infinite multiplicity.
Our concern in this section is the spectrum of H under the condition that
all Mj are connecting:

Theorem 4.2. Let M be a sequence of unitary 2_2-matrices satisfying
(4.3) and let V # L2

loc(R) be a real-valued 2?-periodic function. If the boundary
conditions at the points xj # X are connecting for all j=1, 2, ..., N, then the
spectrum of H is absolutely continuous.

4.2. Direct Integral

The proof of Theorem 4.2 will be based on the standard Bloch (or
Floquet) analysis of the operator H. Associate to the operator H the family
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of operators H(k), k # [0, 1), acting in L2(0, 2?) and defined by the same
differential expression as (4.4) on the domain

D(k)=[u # B(0, 2?) : u(2?)=e2?iku(0), u$(2?)=e2?iku$(0)]. (4.5)

The functions u # D(k) are said to be quasi-periodic. Define the operator

(Uu)(x, k)= :
�

n=&�

e&i2?knu(x+2?n),

acting from L2(R) into the space

H� =|
�

(0, 1)
L2(0, 2?) dk.

It can be easily shown that the mapping U is isometric (see [16]). Repeat-
ing the standard argument from [16] one can also show that the following
decomposition takes place:

UHU*=|
�

(0, 1)
H(k) dk. (4.6)

It is quite straightforward to see that the resolvent of H(k) is compact, so
that the operator H(k) has discrete spectrum for each k # [0, 1). One of the
central conclusions of the Bloch analysis is that the spectrum of the
operator H can be described in terms of the spectra of H(k):

7(H )= .
k # [0, 1)

_d (H(k)).

To prove the absolute continuity of _(H ) we need to study _d (H(k)) more
closely.

First of all we shall prove that the eigenvalues of H(k) are analytic func-
tions of k. To this end we have to modify the operators H(k) to ensure that
their domains do not depend on k. Let , # C �([0, 2?]) be a function such
that

,(0)=0, ,(2?)=2?,

,$(xj)=0, \j=1, 2, ..., N, and ,$(0)=,$(2?)=1. (4.7)

Define in L2(0, 2?) the operator

H� (k)=e&ik,H(k) eik,
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with the domain consisting of all functions u such that eik,u # D(k). This
operator is self-adjoint. Note that due to the conditions (4.7) the domain
of H� (k) is

D� =[u # B(0, 2?) : u(2?)=u(0), u$(2?)=u$(0)].

In particular it does not depend on the parameter k. On the other hand a
direct calculation shows that

H� (k) u=(&id�dx+k,$)2 u+Vu.

Therefore H� (k) is an analytic family of type A (see [9]). The resolvent of
H� (k) is compact and therefore the results of analytic perturbation theory
are applicable.

In accordance with the analytic perturbation theory (see [9],
Theorem VII.3.9) there exists a sequence of scalar functions *l (k), l # N,
and a sequence of vector-functions � l ( } , k) such that

1. The functions *l , �l are real-analytic on (0, 1);

2. For each k # (0, 1) and l # N

H� (k) �l (k)=*l (k) � l (k);

3. The sequence �l (k) forms an orthonormal basis in L2(0, 2?) for
each k # (0, 1).

Absolute continuity of H results from the following theorem:

Theorem 4.3. Under the conditions of Theorem 4.2 there are no
constants among the functions *l (k), k # (0, 1).

Indeed, this property is equivalent to the fact that there are no constants
among the eigenvalues of the operators H(k). Now the decomposition (4.6)
yields the required absolute continuity due to the properties 1�3 and [16],
Theorem XIII.86.

In the next subsection we view the operators H(k) as extensions of one
symmetric operator and use the results of Section 3 to prove Theorem 4.3.

4.3. Quasi-Periodic Problem

In the Hilbert space H=L2(0, 2?) define the operator A0 by the
conditions

A0=H � D(A0), D(A0)=B(0, 2?) , H1 2(0, 2?).
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The operator A0 is densely defined and closed in the space H. Using (4.2)
one can show that A0 is symmetric and the adjoint A0* is defined by the
same differential expression on the domain D(A0*)=B(0, 2?). Also, as in
[5] one proves that the deficiency indices of A0 are (2, 2). All self-adjoint
extensions A # S of A0 have discrete spectrum (see [13]). To apply to A0

the results of the previous section we check that the requirement (3.1) is
fulfilled:

Lemma 4.4. Suppose that the boundary conditions at the points xj # X,
j=1, 2, ..., N, are connecting. Then for any * # R there exists a positive
constant c* such that (3.1) holds.

Proof. Suppose that the converse is true. Then one can find a point
*0 # R and a sequence of functions ,n # D(A0), n=1, 2, ... such that

&,n&=1, &(A0&*0) ,n & � 0, n � �.

Let us analyze separately the following two options:

v The sequence ,n is pre-compact in H;

v The sequence ,n is not pre-compact in H.

If ,n is pre-compact then extract from ,n a convergent subsequence
and denote its limit by ,. Since A0 is closed we have , # D(A0) and
(A0&*0) ,=0. Thus on the interval (0, x1) the function , obeys the
differential equation &,"+V,&*0,=0 with initial conditions ,(0+)=
,$(0+)=0, which implies that ,=,$=0 for all x # (0, x1). Since we
assumed that the boundary conditions are connecting this implies that
,(x1+)=,$(x1+)=0. Repeating the argument for the interval (x1 , x2)
and then for remaining intervals, we conclude that ,(x)=0 for all
x # (0, 2?). This contradicts the equality &,&=lim &,n&=1.

If ,n is not pre-compact, then *0 is a point of the essential spectrum of
A0 and hence of any self-adjoint extension of A0 . This is impossible for the
operators from the class S have purely discrete spectrum. K

In the next lemma we construct a convenient BVS for the operator A0 .
This BVS depends neither on the potential V nor on the set X or the
unitary matrices Mj , j=1, ..., N.

Lemma 4.5. The triple (h, 11 , 12) with

h=C2, 11u=[u$(0+), u$(2?&)], 12u=[u(0+), &u(2?&)]

forms a BVS for the symmetric operator A0 .
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Proof. Integrating by parts for any u, v # D(A0*)=B(0, 2?), we find
that

(A0*u, v)H &(u, A0*v)H =[u, v](2?&)&[u, v](0+)

& :
N

j=1

([u, v](x j+)&[u, v](xj&)).

In view of (4.2) this equality reduces to

(A0*u, v)H &(u, A0*v)H =[u, v](2?&)&[u, v](0+)

=(11u, 12 v)h &(12u, 11v)h .

Hence Condition 1 of Definition 2.1 is fulfilled. Condition 2 is trivially
satisfied. K

Having found a BVS for the operator A0 , we can now study the family

A=[H(k), k # [0, 1)]

of quasi-periodic self-adjoint extensions of A0 . We begin with describing
the family UA of unitary 2_2-matrices parametrizing A and its dual Ud

(see Definition 3.2). It is easily seen from the definitions (2.3) and (4.5) that
the unitary matrix Uk parametrizing the operator H(k) has the form

Uk=\ 0
e2?ik

e&2?ik

0 + , k # [0, 1).

The dual family Ud is constructed in the next lemma:

Lemma 4.6. The dual family Ud consists of the operators of the form

W=W,=\ei,

0
0

e&i,+ , , # [0, 2?).

Proof. For a matrix

W=\w11

w21

w12

w22+
denote

2(k)=det(W&Uk)

=w11w22&w12w21&1+w12 e2?ik&w21 e&2?ik.
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Then the condition

ker(W&Uk){[0], \k # [0, 1),

is equivalent to the fact that the analytic function 2( } ) equals zero for all
k # [0, 1). This implies that w12=w21=0. Thus w11w22=1. By unitary of
W one has w11=ei,, w22=e&i,, , # [0, 2?). K

Denote by A, , , # [0, 2?) the operators from the set Ad constructed by
Ud in accordance with Definition 3.3.

Lemma 4.7. Suppose that the boundary conditions at the points xj # X,
j=1, 2, ..., N, are connecting. Then the spectrum of each A, # Ad consists
only of eigenvalues of multiplicity 1, and hence _max(A,)=<.

Proof. By Lemma 4.6 and (2.3) the boundary conditions defining the
operator A, can be rewritten in the form of two decoupled equations,

(ei,&1) u$(0+)+i(ei,+1) u(0+)=0,

(ei,&1) u$(2?&)&i(ei,+1) u(2?&)=0,

which reduce to

sin % u$(0+)+cos % u(0+)=0,
(4.8)

sin % u$(2?&)&cos % u(2?&)=0

with %=,�2. Thus we need to prove that the eigenvalues of this Sturm�
Liouville-type problem are of multiplicity one. If X=< then this result is
well known. In the case X{< the proof is basically the same.

Suppose that there is an eigenvalue *0 with two linearly independent
eigenfunctions u1 , u2 . Consider their linear combination

u=c1 u1+c2u2 , |c1 |+|c2 |>0.

If ,{0 choose the constants c1 , c2 in such a way that u(0+)=0. Then the
condition (4.8) implies that u$(0+)=0. By uniqueness and due to the fact
that the boundary conditions at all x$j s are connecting, we have u(x)=0
for all x # [0, 2?). This contradicts the linear independence of u1 , u2 . In
the case ,=0 the condition (4.8) yields u1(0+)=u2(0+)=u(0+)=0.
Choosing c1 , c2 in such a way that u$(0+)=0 and repeating the argument
above, we arrive at the required conclusion.

Recall that the deficiency indices of A0 are (2, 2), so that the eigenvalues
of maximal multiplicity must have multiplicity 2. Thus _max(A,)=<. K
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Now Lemma 4.7 and Theorem 3.6 immediately imply that the set of
common eigenvalues of the family H(k), k # [0, 1) is empty, and hence
Theorem 4.3 holds. This in its turn proves the absolute continuity of H
proclaimed in Theorem 4.2.

APPENDIX: SOME PROPERTIES OF J-UNITARY OPERATORS

Here we briefly describe the properties of J-unitary operators used in the
proof of Theorem 2.5.

Let h be a Hilbert space and let H=h�h. Below we denote by black-
board letters the operators in H. Let J : H � H be the operator (2.4). Then
for a J-unitary operator T we obtain from (2.5) that

T*JT=J, ran T=H. (A.1)

It is known (see [3]) that any J-unitary operator is bounded and therefore
can be represented in the form

T=\T11

T21

T12

T22+ (A.2)

with bounded blocks Tjk : h � h, j, k=1, 2. Moreover, (A.1) yields that

T*12 T11&T*22T21 =T*11T12&T*21T22=0; (A.3)

T*11 T11&T*21 T21=T*22T22&T*12T12=I. (A.4)

Since ran T=H the equality (A.1) also implies that T has a bounded inverse
T&1=JT*J defined on the whole of H, whence TJT*=J. This means that

T21T*11&T22T*12 =T11T*21&T12T*22=0; (A.5)

T11 T*11&T12T*12=T22T*22&T21T*21=I. (A.6)

Let us prove some useful properties of the operator T.

Theorem A.1. Let T be a J-unitary operator and let Tjk , j, k=1, 2, be
the entries in the representation (A.2). Then

1. The operator (JT)* is J-unitary in H;

2. The operators T11 , T22 are boundedly invertible:

3. Let &T12&=|1 , &T21&=|2 . Then

&T &1
11 T12 &=&T21T &1

11 &=|2(1+|2
2)&1�2,

(A.7)
&T &1

22 T21 &=&T12T &1
22 &=|1(1+|2

1)&1�2.
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Proof. Statement 1 follows immediately from the equality TJT*=J.
Statement 2 is a direct consequence of (A.4). To prove part 3 represent T12

and T21 in the polar form:

T12=V1T1 , T21=V2T2 ,

with T1=- T*12T12 , T2=- T*21T21 and some partially isometric operators
V1 , V2 . It follows from (A.4) that the polar decompositions of the
operators T11 , T22 have the form

T11=W1(I+T 2
2)1�2, T22=W2(I+T 2

1)1�2

with some unitary operators W1 , W2 . Furthermore, (A.6) ensures that

W1(I+T 2
2) W1*=V1T 2

1V1*+I, W2(I+T 2
1) W2*=V2T 2

2V2*+I.

This yields

T 2
1=W2*V2 T 2

2V2*W2 , T 2
2=W1*V1 T 2

1W 1*W1 . (A.8)

Now we are in position to prove the equalities (A.7). The first pair of them
results from the relation |2=&T21&=&T2& and the following chains of
identities:

&T21T &1
11 &=&V2T2(I+T 2

2)&1�2 W 1*&

=&T2(I+T 2
2)&1�2&;

&T &1
11 T12&2=&(I+T 2

2)&1�2 W1*V1 T1&2

=&(I+T 2
2)&1�2 W1*V1T 2

1V1*W1(I+T 2
2)&1�1&

=&(I+T 2
2)&1�2 T 2

2(I+T 2
2)&1�2&.

In the last equality we have used (A.8). The second pair of equalities in
(A.7) is proved in the same way. K

Proof of Theorem 2.4. Statements 2 and 3 of Theorem A.1 lead directly
to Part 1 in view of the obvious formulae

T11+T12U=T11(I+T &1
11 T12U ),

T21&UT11=U(U*T21T &1
11 &I ) T11 ,

T22+T21U=T22(I+T &1
22 T21U ),

T22&UT12=(I&UT12T &1
22 ) T22 ,

and the fact that the r.h.s. in (A.7) is strictly less than 1.

170 MIKHAILETS AND SOBOLEV



To verify Statement 2 note that by virtue of (A.3) and (A.4) we have

(T*11+U*T*12)(T11+T12U)=(T*21+U*T*22)(T21+T22U).

This ensures the equalities 0(U )* 0(U )=0(U ) 0(U )*=I.
The operator (2.7) is well-defined since (JT)* is J-unitary. The equality

(2.8) results from (A.3), (A.4), and (A.5), (A.6). To prove (2.9) write using
the resolvent identity

0(U)&0(W )=B1(U&W ) B&1
2 ,

B1=(T22&0(U ) T12), B2=(T11+T12W).

The operators B1 , B2 are boundedly invertible by virtue of Part 1. Thus the
subspaces ker(U&W ) and ker(0(U )&0(W )) are linearly homeomorphic
and therefore they have the same dimension. K
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