11 research outputs found

    Dusty MgII Absorbers: Implications for the GRB/Quasar Incidence Discrepancy

    Full text link
    There is nearly a factor of four difference in the number density of intervening MgII absorbers as determined from gamma-ray burst (GRB) and quasar lines of sight. We use a Monte-Carlo simulation to test if a dust extinction bias can account for this discrepancy. We apply an empirically determined relationship between dust column density and MgII rest equivalent width to simulated quasar sight-lines and model the underlying number of quasars that must be present to explain the published magnitude distribution of SDSS quasars. We find that an input MgII number density dn/dz of 0.273 +- 0.002 over the range 0.4 = 1.0 angstroms accurately reproduces observed distributions. From this value, we conclude that a dust obstruction bias cannot be the sole cause of the observed discrepancy between GRB and quasar sight-lines: this bias is likely to reduce the discrepancy only by ~10%.Comment: 11 pages (including 4 figures). ApJ Accepted Revision: Corrected author lis

    Intervening Metal Systems in GRB and QSO sight-lines: The Mgii and Civ Question

    Full text link
    Prochter et al. 2006 recently found that the number density of strong intervening 0.5<z<2 MgII absorbers detected in gamma-ray burst (GRB) afterglow spectra is nearly 4 times larger than in QSO spectra. We have conducted a similar study using CIV absorbers. Our CIV sample, consisting of a total of 20 systems, is drawn from 3 high resolution and high to moderate S/N VLT/UVES spectra of 3 long-duration GRB afterglows, covering the redshift interval 1.6< z<3.1. The column density distribution and number density of this sample do not show any statistical difference with the same quantities measured in QSO spectra. We discuss several possibilities for the discrepancy between CIV and MgII absorbers and conclude that a higher dust extinction in the MgII QSO samples studied up to now would give the most straightforward solution. However, this effect is only important for the strong MgII absorbers. Regardless of the reasons for this discrepancy, this result confirms once more that GRBs can be used to detect a side of the universe that was unknown before, not necessarily connected with GRBs themselves, providing an alternative and fundamental investigative tool of the cosmic evolution of the universe.Comment: 21 pages, 4 figures, ApJ accepted, Revised after Referee Repor

    Clustering of galaxies around GRB sight-lines

    Full text link
    There is evidence of an overdensity of strong intervening MgII absorption line systems distributed along the lines of sight towards GRB afterglows relative to quasar sight-lines. If this excess is real, one should also expect an overdensity of field galaxies around GRB sight-lines, as strong MgII tends to trace these sources. In this work, we test this expectation by calculating the two point angular correlation function of galaxies within 120^{\prime\prime} (470 h711 Kpc\sim470~h_{71}^{-1}~\mathrm{Kpc} at z0.4\langle z\rangle \sim0.4) of GRB afterglows. We compare the Gamma-ray burst Optical and Near-infrared Detector (GROND) GRB afterglow sample -- one of the largest and most homogeneous samples of GRB fields -- with galaxies and AGN found in the COSMOS-30 photometric catalog. We find no significant signal of anomalous clustering of galaxies at an estimated median redshift of z0.3z\sim0.3 around GRB sight-lines, down to KAB<19.3K_{\mathrm{AB}}<19.3. This result is contrary to the expectations from the MgII excess derived from GRB afterglow spectroscopy, although many confirmed galaxy counterparts to MgII absorbers may be too faint to detect in our sample -- especially those at z>1z>1. We note that the addition of higher sensitivity Spitzer IRAC or HST WFC3 data for even a subset of our sample would increase this survey's depth by several orders of magnitude, simultaneously increasing statistics and enabling the investigation of a much larger redshift space.}Comment: 10 pages, 6 figures. A&A accepte

    GRB 091127: The cooling break race on magnetic fuel

    Get PDF
    Using high-quality, broad-band afterglow data for GRB 091127, we investigate the validity of the synchrotron fireball model for gamma-ray bursts, and infer physical parameters of the ultra-relativistic outflow. We used multi-wavelength follow-up observations obtained with GROND and the XRT onboard the Swift satellite. The resulting afterglow light curve is of excellent accuracy, and the spectral energy distribution is well-sampled over 5 decades in energy. These data present one of the most comprehensive observing campaigns for a single GRB afterglow and allow us to test several proposed emission models and outflow characteristics in unprecedented detail. Both the multi-color light curve and the broad-band SED of the afterglow of GRB 091127 show evidence of a cooling break moving from high to lower energies. The early light curve is well described by a broken power-law, where the initial decay in the optical/NIR wavelength range is considerably flatter than at X-rays. Detailed fitting of the time-resolved SED shows that the break is very smooth with a sharpness index of 2.2 +- 0.2, and evolves towards lower frequencies as a power-law with index -1.23 +- 0.06. These are the first accurate and contemporaneous measurements of both the sharpness of the spectral break and its time evolution. The measured evolution of the cooling break (nu_c propto t^-1.2) is not consistent with the predictions of the standard model, wherein nu_c propto t^-0.5 is expected. A possible explanation for the observed behavior is a time dependence of the microphysical parameters, in particular the fraction of the total energy in the magnetic field epsilon_B. This conclusion provides further evidence that the standard fireball model is too simplistic, and time-dependent micro-physical parameters may be required to model the growing number of well-sampled afterglow light curves.Comment: accepted to A&A, 13 pages, 5 figure

    A very luminous magnetar-powered supernova associated with an ultra-long gamma-ray burst

    Get PDF
    A new class of ultra-long duration (>10,000 s) gamma-ray bursts has recently been suggested1,2,3. They may originate in the explosion of stars with much larger radii than normal long gamma-ray bursts3,4 or in the tidal disruptions of a star3. No clear supernova had yet been associated with an ultra-long gamma-ray burst. Here we report that a supernova (2011kl) was associated with the ultra-long duration burst 111209A, at z=0.677. This supernova is more than 3 times more luminous than type Ic supernovae associated with long gamma-ray bursts5,6,7, and its spectrum is distinctly different. The continuum slope resembles those of super-luminous supernovae8,9, but extends farther down into the rest-frame ultra-violet implying a low metal content. The light curve evolves much more rapidly than super-luminous supernovae. The combination of high luminosity and low metal-line opacity cannot be reconciled with typical type Ic supernovae, but can be reproduced by a model where extra energy is injected by a strongly magnetized neutron star (a magnetar), which has also been proposed as the explanation for super-luminous supernovae20,20a
    corecore