21 research outputs found

    Method for Calculating the Static Characteristics of Radial Hydrostatic Compensator of Machine Tool Bearings Deformation

    Get PDF
    The design, mathematical model and methods of calculating static characteristics of the radial hydrostatic compensator of machine tool bearings deformation are considered. The research has shown that the design is able to provide a stable value of negative compliance in the range of small and moderate load values. It has been identified that the type of characteristics largely depends on the adjustment factor of the input choke hydraulic resistance, for which there is an optimal value in terms of the load characteristics stability. The example of calculating the compensatorβ€²s parameters is given, and it is shown that the compensator is capable to provide the functions for the machine with real characteristics

    Compliance of Gas-Dynamic Bearing with Elastic Compensator of Movement

    Get PDF
    ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π° конструкция, ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ матСматичСская модСль ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° расчСта податливости газодинамичСского подшипника с эластичным компСнсатором пСрСмСщСния. Показано, Ρ‡Ρ‚ΠΎ подшипник ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΠ±Π»Π°Π΄Π°Ρ‚ΡŒ сколь ΡƒΠ³ΠΎΠ΄Π½ΠΎ ΠΌΠ°Π»ΠΎΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½ΡƒΠ»Π΅Π²ΠΎΠΉ ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎΠ΄Π°Ρ‚Π»ΠΈΠ²ΠΎΡΡ‚ΡŒΡŽThe design, the mathematical model and calculation method of compliance of a gas-dynamic bearing with elastic compensator of movement presented. It is shown that the bearing can have an arbitrarily small positive as well as negative and zero complianc

    Characteristics of Radial Gas-Static Bearing of Step Type

    Get PDF
    РассмотрСна конструкция Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ газостатичСского подшипника ступСнчатого Ρ‚ΠΈΠΏΠ°. Π’ сравнСнии с Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ Π΄Ρ€ΠΎΡΡΠ΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ газостатичСскими подшипниками устройство отличаСтся простотой конструкции ΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ. Подшипник всСгда устойчив. УмСньшСниС податливости нСсущСго слоя, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, сопровоТдаСтся ростом быстродСйствия подшипника. Зависимости стСпСни устойчивости ΠΏΠΎ ряду ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΈΠΌΠ΅ΡŽΡ‚ Π³Π»ΠΎΠ±Π°Π»ΡŒΠ½Ρ‹ΠΉ максимум, Ρ‡Ρ‚ΠΎ позволяСт, ΠΎΡΠ½ΠΎΠ²Ρ‹Π²Π°ΡΡΡŒ Π½Π° динамичСских расчСтах, ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠΎ Π±Ρ‹ΡΡ‚Ρ€ΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ конструкцииThe design of step gas-static bearing is considered. In comparison with conventional throttle gasstatic bearings the device is characterized by simplicity of design and manufacturability. Bearing is always stable. Decrease of compliance of the carrier gap is accompanied by increase of speed of the bearing. Dependencies of degree of stability in a number of parameters have a global maximum, what allows design optimal constructions based on dynamic calculation

    ЧислСнно-аналитичСский ΠΌΠ΅Ρ‚ΠΎΠ΄ опрСдСлСния ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ связи лапласовых трансформант ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½Π½ΠΎΠ³ΠΎ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π±Π»ΠΎΠΊΠ° газостатичСских подшипников

    Get PDF
    The paper proposes a numeric-analytical method for determining the communication equations of Laplace’s transformants of dynamic functions of the universal unit of radial externallypressurized gas bearings which movable element makes small radial oscillations in the locality in its central position. Method and obtained dependences provide links between integro-differential Laplace’s transformants of the unit such as load capacity and local input and output mass flow rates with transformants of eccentricity and gas lubricant pressure at inlet and outlet of the unit. It is shown that the local transfer functions of the unit model are rational functions of the Laplace’s transform variable and all such functions have a common denominator in the form of a polynomial of this variable. The method allows to calculate the required dynamic criterion of gas bearings containing this unit with prescribed accuracy. Founded dependences give ready formulas for calculation dynamic criteria of radial single-row or multi-row ordinary passive or active externally-pressurized gas bearings in which this unit can be used for description of radial movement of its movable elementΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ числСнно-аналитичСский ΠΌΠ΅Ρ‚ΠΎΠ΄ опрСдСлСния лапласовых трансформант динамичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ для ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π±Π»ΠΎΠΊΠ° газостатичСских подшипников, ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Ρ‹ΠΉ элСмСнт ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ ΠΌΠ°Π»Ρ‹Π΅ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ колСбания Π² окрСстности Π΅Π³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ полоТСния. ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ зависимости ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ связь ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΎ-Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… лапласовых трансформант нСсущСй способности ΠΈ Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… массовых расходов Π½Π° Π²Ρ…ΠΎΠ΄Π΅ ΠΈ Π²Ρ‹Ρ…ΠΎΠ΄Π΅ Π±Π»ΠΎΠΊΠ° с трансформантами эксцСнтриситСта ΠΈ Π΄Π°Π²Π»Π΅Π½ΠΈΠΉ ΡΠΌΠ°Π·Ρ‹Π²Π°ΡŽΡ‰Π΅Π³ΠΎ Π³Π°Π·Π° Π½Π° Π²Ρ…ΠΎΠ΄Π΅ ΠΈ Π²Ρ‹Ρ…ΠΎΠ΄Π΅ Π±Π»ΠΎΠΊΠ°. Показано, Ρ‡Ρ‚ΠΎ Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π±Π»ΠΎΠΊΠ° ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ прСобразования Лапласа ΠΈ Ρ‡Ρ‚ΠΎ всС Ρ‚Π°ΠΊΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ±Ρ‰ΠΈΠΉ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ Π² Π²ΠΈΠ΄Π΅ ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠ° ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ этой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ. ΠœΠ΅Ρ‚ΠΎΠ΄ позволяСт Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒ Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΡ‹ΠΉ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ качСства Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ подшипников, содСрТащих Π΄Π°Π½Π½Ρ‹ΠΉ Π±Π»ΠΎΠΊ, с Π½Π°ΠΏΠ΅Ρ€Π΅Π΄ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ. НайдСнныС уравнСния связСй Π΄Π°ΡŽΡ‚ Π³ΠΎΡ‚ΠΎΠ²Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для расчСта ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅Π² качСства Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ содСрТащих Ρ‚Π°ΠΊΠΎΠΉ Π±Π»ΠΎΠΊ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… однорядных, многорядных ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Ρ… пассивных ΠΈΠ»ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… газостатичСских подшипников, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ΡΡ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈΡ… ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Ρ‹Ρ… элСмСнто

    Numerical Modeling on the Compliance and Load Capacity of a Two-Row Aerostatic Journal Bearing with Longitudinal Microgrooves in the Inter-Row Zone

    No full text
    Aerostatic bearings are attractive, with minimal friction losses, high durability, and environmental friendliness. However, such designs have a number of disadvantages, including low load-bearing capacity and high compliance due to high air compressibility and limited injection pressure. The article proposes a double-row aerostatic journal bearing with an external combined throttling system and longitudinal microgrooves in the inter-row zone. It is hypothesized that the use of microgrooves will reduce the circumferential flows of compressed air, as a result of which the compliance should decrease and the bearing capacity should increase. To test the hypothesis, we carried out the mathematical modeling, calculations, and theoretical study of stationary operation modes of the bearing for small shaft eccentricities in the vicinity of the central equilibrium position of the shaft and bearing capacity for arbitrary eccentricities. Formulas were obtained for the numerical evaluation of compliance for bearings with a smooth bushing surface and with longitudinal microgrooves. Iterative finite-difference methods for evaluating the fields of the squared pressure are proposed, on the basis of which the load capacity of the bearings is calculated. Experimental verification of the bearing’s theoretical characteristics was carried out, which showed satisfactory agreement between the compared data. The study of the compliance and load capacity of a microgroove bearing yielded impressive results. We show that the positive effect from the application of the improvement begins to manifest itself already at four microgrooves; the effect becomes significant at six microgrooves, and at twelve or more microgrooves, the circumferential flows in the bearing gap practically disappear; therefore, the bearing characteristics can be calculated on the basis of one-dimensional models of air lubrication longitudinal flow. Calculations have shown that for a length of L = 1, the maximum load capacity of a bearing with microgrooves is 1.5 times higher than that of a conventional bearing; for L β‰₯ 1.5, the bearing capacity increases twice or more. The result obtained allows us to recommend the proposed improvement for practical use in order to increase the load capacity of aerostatic journal bearings significantly

    Static Characteristics of Active Hydrostatic Two-Row Radial Bearing with Restriction of Output Lubricant Flow

    Get PDF
    The design of active hydrostatic radial bearing with smooth cylindrical surfaces and lubricant output flow restrictors in the form of movable rings on membrane suspension is presented. The device is several times less power-consuming compared with known devices of flow control. The bearing has a negative and zero compliance (infinite stiffness), and therefore can be used in machine tools to suppress the negative influence of elastic system deformation on the accuracy of processing. On the basis of two-dimensional model of lubricant flow developed a mathematical model, method and procedure for calculating the bearing load capacity and flow rate. It is established, that the calculation of static characteristics of bearing in the entire range of operating loads can be correctly performed only on the base of two-dimensional model. For small eccentricities the characteristic of zero and negative compliance can be calculated with sufficient accuracy by the simplified method, based on one-dimensional motion of lubricant flow. Bearing of zero or negative compliance have load capacity range, which is 20 - 50% more than conventional bearings of the same overall dimensions. The setting of input throttling slits resistance decisive influence on the optimal static characteristics of the bearing. The optimal values of its resistance for conventional and active bearing are practically identical.РассмотрСна конструкция Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ гидростатичСского Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ подшипника с Π³Π»Π°Π΄ΠΊΠΈΠΌΠΈ цилиндричСскими Ρ€Π°Π±ΠΎΡ‡ΠΈΠΌΠΈ повСрхностями ΠΈ ограничитСлями Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠ³ΠΎ смазочного ΠΏΠΎΡ‚ΠΎΠΊΠ° смазки Π² Π²ΠΈΠ΄Π΅ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Ρ‹Ρ… ΠΊΠΎΠ»Π΅Ρ† с ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹ΠΌ подвСсом. Устройство Π² нСсколько Ρ€Π°Π· ΠΌΠ΅Π½Π΅Π΅ энСргоСмко ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ c извСстными устройствами с рСгуляторами расхода. Подшипник ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΈ Π½ΡƒΠ»Π΅Π²ΠΎΠΉ ΠΏΠΎΠ΄Π°Ρ‚Π»ΠΈΠ²ΠΎΡΡ‚ΡŒΡŽ (бСсконСчной ΠΆΠ΅ΡΡ‚ΠΊΠΎΡΡ‚ΡŒΡŽ), поэтому ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использован Π² ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΡ€Π΅ΠΆΡƒΡ‰ΠΈΡ… станках для подавлСния Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ влияния Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΡƒΠΏΡ€ΡƒΠ³ΠΎΠΉ систСмы Π½Π° Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ. На основС Π΄Π²ΡƒΡ…ΠΌΠ΅Ρ€Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ смазочного ΠΏΠΎΡ‚ΠΎΠΊΠ° Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° матСматичСская модСль, ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° расчСта нСсущСй способности ΠΈ расхода смазки подшипника. УстановлСно, Ρ‡Ρ‚ΠΎ расчСт статичСских характСристик подшипника Π²ΠΎ всСм Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π½Π°Π³Ρ€ΡƒΠ·ΠΎΠΊ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚Π½ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π° основС Π΄Π²ΡƒΡ…ΠΌΠ΅Ρ€Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ. ΠŸΡ€ΠΈ ΠΌΠ°Π»Ρ‹Ρ… эксцСнтриситСтах характСристики Π½ΡƒΠ»Π΅Π²ΠΎΠΉ ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ податливости ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ с ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ рассчитаны ΠΏΠΎ ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ΅, Π±Π°Π·ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉΡΡ Π½Π° ΠΎΠ΄Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ смазочного ΠΏΠΎΡ‚ΠΎΠΊΠ°. Подшипники Π½ΡƒΠ»Π΅Π²ΠΎΠΉ ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ податливости ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ Π³Ρ€ΡƒΠ·ΠΎΠΏΠΎΠ΄ΡŠΠ΅ΠΌΠ½ΠΎΡΡ‚ΡŒΡŽ, которая Π½Π° 20 - 50 % большС, Ρ‡Π΅ΠΌ Ρƒ ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Ρ… подшипников Ρ‚Π΅Ρ… ΠΆΠ΅ Π³Π°Π±Π°Ρ€ΠΈΡ‚Π½Ρ‹Ρ… Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ². Настройка гидравличСского сопротивлСния Π²Ρ…ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠΈΡ‚Π°ΡŽΡ‰Π΅ΠΉ Ρ‰Π΅Π»ΠΈ Ρ€Π΅ΡˆΠ°ΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ влияСт Π½Π° ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ статичСскиС характСристики подшипника. ΠžΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ значСния сопротивлСния Ρ‰Π΅Π»ΠΈ для ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Ρ… ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… подшипников практичСски ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚

    Characteristics of Radial Gas-Static Bearing of Step Type

    No full text
    РассмотрСна конструкция Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ газостатичСского подшипника ступСнчатого Ρ‚ΠΈΠΏΠ°. Π’ сравнСнии с Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ Π΄Ρ€ΠΎΡΡΠ΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ газостатичСскими подшипниками устройство отличаСтся простотой конструкции ΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ. Подшипник всСгда устойчив. УмСньшСниС податливости нСсущСго слоя, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, сопровоТдаСтся ростом быстродСйствия подшипника. Зависимости стСпСни устойчивости ΠΏΠΎ ряду ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΈΠΌΠ΅ΡŽΡ‚ Π³Π»ΠΎΠ±Π°Π»ΡŒΠ½Ρ‹ΠΉ максимум, Ρ‡Ρ‚ΠΎ позволяСт, ΠΎΡΠ½ΠΎΠ²Ρ‹Π²Π°ΡΡΡŒ Π½Π° динамичСских расчСтах, ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠΎ Π±Ρ‹ΡΡ‚Ρ€ΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ конструкцииThe design of step gas-static bearing is considered. In comparison with conventional throttle gasstatic bearings the device is characterized by simplicity of design and manufacturability. Bearing is always stable. Decrease of compliance of the carrier gap is accompanied by increase of speed of the bearing. Dependencies of degree of stability in a number of parameters have a global maximum, what allows design optimal constructions based on dynamic calculation

    Stability of Energy-Saving Adaptive Journal Hydrostatic Bearing with a Restriction of the Output Lubricant Stream

    No full text
    Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ рассмотрСны вопросы качСства Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½ΠΎΠΉ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ гидростатичСской ΠΎΠΏΠΎΡ€Ρ‹ с ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ° смазки. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π° матСматичСская модСль ΠΎΠΏΠΎΡ€Ρ‹, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π° аналитичСская Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ для ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ динамичСской податливости Π»ΠΈΠ½Π΅Π°Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠΉ нСстационарной ΠΌΠΎΠ΄Π΅Π»ΠΈ. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΎΠΏΠΎΡ€Π° ΠΌΠΎΠΆΠ΅Ρ‚ Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ устойчиво Π½Π° Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ… ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ податливости. ΠŸΡ€ΠΈ этом ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΈΠ΅ΠΌΠ»Π΅ΠΌΡ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ качСства Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ свободных ΠΈ Π²Ρ‹Π½ΡƒΠΆΠ΄Π΅Π½Π½Ρ‹Ρ… ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ. Устойчивая ΠΎΠΏΠΎΡ€Π° ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΡƒΡŽ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ податливости. ΠšΠΎΠ½ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΡ ΠΎΠΏΠΎΡ€Ρ‹ ΠΏΡ€ΠΈ ΠΎΠ΄ΠΈΠ½Π°Ρ€Π½ΠΎΠΌ дроссСлировании Π²Ρ…ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ° смазки склонна ΠΊ колСбаниям, ΠΎΠ΄Π½Π°ΠΊΠΎ Π² ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ области ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ достаточным запасом устойчивости.The paper discusses issues of quality of the dynamics for adaptive radial hydrostatic bearing with a restriction of the output lubricant stream. The article presents a mathematical model of support, an analytical dependence for the transfer function of the dynamic compliance for the linearized nonstationary model. It is established that reliance can operate stably at modes of negative compliance. This provided an acceptable quality indicators of dynamics for free and forced oscillations. Sustained bearing has a limited region of negative compliance. Design of bearing for ordinary throttling input lubricant is prone to fluctuations, but in this area has a sufficient margin of stability

    ЧислСнно-аналитичСский ΠΌΠ΅Ρ‚ΠΎΠ΄ опрСдСлСния ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ связи лапласовых трансформант ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½Π½ΠΎΠ³ΠΎ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π±Π»ΠΎΠΊΠ° газостатичСских подшипников

    No full text
    The paper proposes a numeric-analytical method for determining the communication equations of Laplace’s transformants of dynamic functions of the universal unit of radial externallypressurized gas bearings which movable element makes small radial oscillations in the locality in its central position. Method and obtained dependences provide links between integro-differential Laplace’s transformants of the unit such as load capacity and local input and output mass flow rates with transformants of eccentricity and gas lubricant pressure at inlet and outlet of the unit. It is shown that the local transfer functions of the unit model are rational functions of the Laplace’s transform variable and all such functions have a common denominator in the form of a polynomial of this variable. The method allows to calculate the required dynamic criterion of gas bearings containing this unit with prescribed accuracy. Founded dependences give ready formulas for calculation dynamic criteria of radial single-row or multi-row ordinary passive or active externally-pressurized gas bearings in which this unit can be used for description of radial movement of its movable elementΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ числСнно-аналитичСский ΠΌΠ΅Ρ‚ΠΎΠ΄ опрСдСлСния лапласовых трансформант динамичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ для ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π±Π»ΠΎΠΊΠ° газостатичСских подшипников, ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Ρ‹ΠΉ элСмСнт ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ ΠΌΠ°Π»Ρ‹Π΅ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ колСбания Π² окрСстности Π΅Π³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ полоТСния. ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ зависимости ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ связь ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΎ-Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… лапласовых трансформант нСсущСй способности ΠΈ Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… массовых расходов Π½Π° Π²Ρ…ΠΎΠ΄Π΅ ΠΈ Π²Ρ‹Ρ…ΠΎΠ΄Π΅ Π±Π»ΠΎΠΊΠ° с трансформантами эксцСнтриситСта ΠΈ Π΄Π°Π²Π»Π΅Π½ΠΈΠΉ ΡΠΌΠ°Π·Ρ‹Π²Π°ΡŽΡ‰Π΅Π³ΠΎ Π³Π°Π·Π° Π½Π° Π²Ρ…ΠΎΠ΄Π΅ ΠΈ Π²Ρ‹Ρ…ΠΎΠ΄Π΅ Π±Π»ΠΎΠΊΠ°. Показано, Ρ‡Ρ‚ΠΎ Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π±Π»ΠΎΠΊΠ° ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ прСобразования Лапласа ΠΈ Ρ‡Ρ‚ΠΎ всС Ρ‚Π°ΠΊΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ±Ρ‰ΠΈΠΉ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ Π² Π²ΠΈΠ΄Π΅ ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠ° ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ этой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ. ΠœΠ΅Ρ‚ΠΎΠ΄ позволяСт Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒ Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΡ‹ΠΉ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ качСства Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ подшипников, содСрТащих Π΄Π°Π½Π½Ρ‹ΠΉ Π±Π»ΠΎΠΊ, с Π½Π°ΠΏΠ΅Ρ€Π΅Π΄ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ. НайдСнныС уравнСния связСй Π΄Π°ΡŽΡ‚ Π³ΠΎΡ‚ΠΎΠ²Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для расчСта ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅Π² качСства Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ содСрТащих Ρ‚Π°ΠΊΠΎΠΉ Π±Π»ΠΎΠΊ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… однорядных, многорядных ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Ρ… пассивных ΠΈΠ»ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… газостатичСских подшипников, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ΡΡ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈΡ… ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Ρ‹Ρ… элСмСнто

    Negative Compliance of Energy-Saving Adaptive Journal Hydrostatic Bearing with a Restriction of the Output Lubricant Stream

    No full text
    БСсконтактныС ΠΎΠΏΠΎΡ€Ρ‹ скольТСния с Тидкостной смазкой, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠ΅ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎΠ΄Π°Ρ‚Π»ΠΈΠ²ΠΎΡΡ‚ΡŒΡŽ нСсущСго смазочного слоя, ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π² ΡƒΠ·Π»Π°Ρ… станков для компСнсации Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΉ Π΅Π³ΠΎ ΡƒΠΏΡ€ΡƒΠ³ΠΎΠΉ систСмы с Ρ†Π΅Π»ΡŒΡŽ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ точности ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ. Π˜Π·Π²Π΅ΡΡ‚Π½Ρ‹Π΅ конструкции Ρ‚Π°ΠΊΠΈΡ… ΠΎΠΏΠΎΡ€, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ податливости происходит Π·Π° счСт примСнСния Π²Ρ…ΠΎΠ΄Π½Ρ‹Ρ… рСгуляторов расхода (ΠΠ“Π‘Πž-Π Π ), ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ высокой ΡΠ½Π΅Ρ€Π³ΠΎΠ΅ΠΌΠΊΠΎΡΡ‚ΡŒΡŽ ΠΈ Π½Π΅ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ характСристики податливости. Π’ настоящСй Ρ€Π°Π±ΠΎΡ‚Π΅ рассмотрСна конструкция Π½ΠΎΠ²ΠΎΠΉ ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΈ Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΎΠΏΠΎΡ€ - Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½Π°Ρ гидростатичСская ΠΎΠΏΠΎΡ€Π° с ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ° смазки (ΠΠ“Π‘Πž-Π’ΠŸ). ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π° матСматичСская модСль ΠΎΠΏΠΎΡ€Ρ‹, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ расчСтныС аналитичСскиС зависимости ΠΈ рассмотрСн ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ опрСдСлСния Π΅Ρ‘ статичСских характСристик Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° влияния Π½Π° Π½ΠΈΡ… ΠΎΠΊΡ€ΡƒΠΆΠ½Ρ‹Ρ… ΠΏΠ΅Ρ€Π΅Ρ‚ΠΎΠΊΠΎΠ² смазки. Показано, Ρ‡Ρ‚ΠΎ ΠΠ“Π‘Πž-Π’ΠŸ Π² сравнСнии с ΠΠ“Π‘Πž-Π Π  потрСбляСт энСргии Π² 3-4 Ρ€Π°Π·Π° мСньшС. ΠŸΡ€ΠΈ этом ΠΎΠ½Π° ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ Π±ΠΎΠ»Π΅Π΅ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ характСристиками ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ податливости ΠΈ Π±ΠΎΠ»Π΅Π΅ ΡˆΠΈΡ€ΠΎΠΊΠΈΠΌ Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½Ρ‹ΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ΠΎΠΌ Π½Π°Π³Ρ€ΡƒΠ·ΠΎΠΊ. УстановлСно Ρ‚Π°ΠΊΠΆΠ΅, Ρ‡Ρ‚ΠΎ ΠΠ“Π‘Πž-Π’ΠŸ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ податливости Π±ΠΎΠ»Π΅Π΅ экономична Π΄Π°ΠΆΠ΅ Π² сравнСнии с ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠΉ гидростатичСской ΠΎΠΏΠΎΡ€ΠΎΠΉ.Non-contact sliding bearings lubricated with a liquid, which have a negative compliance of lubricating film, can be used in the machine-tool nodes to compensate of its elastic system deformation for improve the accuracy of processing. Known designs of such bearings, in which a decrease in ductility is due to the application of input consumption regulators (AGSB-CR), have high energy costs and instability characteristics of compliance. In this paper we consider the construction of a new category of adaptive bearings - journal hydrostatic bearing with a restriction of the output lubricant stream (AGSB-OS). The paper presents a mathematical model of support, according to analytical estimates obtained and considered a simplified method for determination of its static characteristics without the influence on them district overflows lubrication. It is shown that AGSB-OS compared with AGSB-CR consumes energy is 3-4 times smaller. It has more stable characteristics of negative compliance and a broader range of adaptive loads. It was also found that AGSB-OS with negative compliance is more economical, even in comparison with the conventional hydrostatic bearing
    corecore