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The paper proposes a numeric-analytical method for determining the communication equations
of Laplace’s transformants of dynamic functions of the universal unit of radial externally-
pressurized gas bearings which movable element makes small radial oscillations in the locality in
its central position. Method and obtained dependences provide links between integro-differential
Laplace’s transformants of the unit such as load capacity and local input and output mass flow
rates with transformants of eccentricity and gas lubricant pressure at inlet and outlet of the
unit. It is shown that the local transfer functions of the unit model are rational functions of the
Laplace’s transform variable and all such functions have a common denominator in the form of
a polynomial of this variable. The method allows to calculate the required dynamic criterion of
gas bearings containing this unit with prescribed accuracy. Founded dependences give ready
formulas for calculation dynamic criteria of radial single-row or multi-row ordinary passive or
active externally-pressurized gas bearings in which this unit can be used for description of radial
movement of its movable element.

Keywords: externally-pressurized gas bearing, numeric-analytical method, dynamic functions.

Introduction

In the study of dynamic quality of externally-pressurized gas bearings is used nonstationary
Reynolds’ differential equation [1] which describes the dynamic pressure distribution in the thin
gas lubricating gap of loading or throttle unit. Solution of this equation allows to determine the
load capacity of the unit and gas flow rate at its inlet and outlet. The main difficulties in the
calculation of the dynamics of bearings, relate to obtaining solutions of the equation in view of
its nonlinearity.

Within the linear theory, in which integral Laplace transform [2] is applied for research of dynamics
of bearings, the solution of the corresponding linearized differential boundary value problems lies

approximately as the such problems have no analytical quadratures. Known approximate methods

© Siberian Federal University. All rights reserved
*  Corresponding author E-mail address: kowlad@rambler.ru

— 0637 —



Vladimir A. Kodnyanko. Numeric-Analytical Method for Determining the Communication Equations...

differ in bulkiness, complexity of the received solution and lack of an assessment of its accuracy
[3,4]. If it is considered that the solution of these problems is only intermediate element, obtaining the
solution of the general integro-differential problem of finding load capacity and gas flow rates deals
with greater difficulties.

Taking into account a tendency of complication of the designs using gas-lubricated units and,
as a result, complication of the corresponding mathematical models, the search of methods for
approximate solutions of noted boundary value problems, which allow to find their decision with
a prescribed accuracy is actual. In this regard numerical methods, for which there is no problem
of analytical quadratures [5], attract attention. The application of these methods allows to receive
the solution of differential problems with an accuracy demanded for practice and possibility of its
assessment.

However the circumstance that the structure of linearized and Laplace’s transformed differential
equation, includes beforehand unknown Laplace’s variable and some Laplace’s transformants for unit
functions, is an obstacle for numerical search of the solution. In this regard numerical and analytical
approach to the solution of the specified problems which will allow to find the solution of the boundary
value problems deserves attention.

Below it is given a method solving this problem with the example of the universal radial gas-

lubricated unit, making radial movements concerning the central equilibrium position.

Mathematical modeling of unit radial movement

The settlement scheme of the unit is shown in Fig. 1.

The unit consists of the cylindrical plug 1 and shaft 2, making movement at which axes of these
elements keep a parallel arrangement. These elements are separated by a thin gap of compressed gas
under pressure p (z, @, £); gap thickness 4 (o, f) = hy — e (f) cos (¢), where &, — gap thickness at a coaxial
arrangement of elements, e — eccentricity of shaft; z, ¢ — longitudinal and circumferential coordinates,
t — current time.

The boundary value problem for function of pressure, which satisfies to Reynolds’s differential

equation [1], has the form

b2

Fig. 1. Settlement scheme of radial gas-lubricated unit

— 638 —



Vladimir A. Kodnyanko. Numeric-Analytical Method for Determining the Communication Equations...

1 0(., op 5(3810} o(ph)
Kp |y Ly p P10 921
r@(p( paq)] 2\ P )T M

p(0,0,0) = p,(9,0), p(l 0,0 = p,(9, t) (1)
p(z,0,t) = p(z,2n t) (ZOt)——(z 2m,t),

p(2,9,0)= py(2),
where p,, p, — functions of gas pressure at inlet and outlet of the unit, p,(z) — gas pressure at a
coaxial arrangement of elements, » — the radius of a shaft, / — unit length, p — viscosity of gas
lubricant.

Having taken for scales: p, — environment pressure for pressures; set from the outside /. —
thickness of a lubricant gap, - — the size and ¢ — time scale constants, we will lead a problem (1) to a

dimensionless form

s

2 2 p2
L O p @ yp 0P 5 APH)
R* 09 o oz ot

P(O@T):P(M)P(chr):P(tpr) 2

P(Z,0,1) = p(zzm) (zo )_—(zzm)

P(Z,9,0) = F(2),

where H(p,t)=H,—¢&(t)Cos(p) —the dimensionless thickness of a lubricant gap, € — shaft eccentricity,
L=1/r,R=r/r, —dimensionless length of the unit and shaft radius; Z,t — dimensionless longitudinal

12ur?

coordinate and current dimensionless time; o = — number of squeezing of a gas film [6].

a *

Hereinafter dimensionless sizes are designated by capital letters.
Let’s consider small fluctuations of a shaft concerning its central position. In this case the square

of pressure function can be presented in the form

P(Z,0.1)=Y(Z,0,1) = P (Z)+A¥(Z,1)Cosp, 3)

where AY — a projection function of a deviation from state at a coaxial arrangement of unit elements.
Assuming that eccentricity € =Ae will be small also, after linearization of a problem (2) and
applications to it Laplace’s transform, linearized problem for Laplace’s transformants can be written

as follows

d’x
AY(0,5) = A¥i(s), A¥(B,s) = A¥1(s),

—
dA\P—[] aBSjA‘P ~asP At

@

0

where new variable X = Z/R, B = L/R, o.=cR*/H,,p =H,/2, s — beforehand unknown variable of

Laplace’s transform,

X
RO =B+ (PR )5 )
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— function of lubricant static pressure at a coaxial arrangement of elements, P —known values

]0’ 20
of static pressure at unit inlet and outlet.
Boundary functions in (4), as it appears from (3), are related with transformants of pressure

deviations by relationships

A\ = 2P, AP, A2 = 2P, AP-. ©

Here line from above marked Laplace’s transformants of the corresponding deviations.

Numeric- analytical method of the solution
of a boundary problem (4)

As it is mentioned above, the boundary problem (4) has no analytical decision. It is impossible
to apply to it also numerical methods because boundary transformants and Laplace’s variable s aren’t
known beforehand. Numeric-analytical method of its solution is given below.

According to the principle of superposition [7] we will find a solution of the problem (4) in the

form
AY =T,(Z,5)AY: +T,(Z,5)AY2 +T.(Z,5)A¢, 7

Having substituted (7) in (4) and having executed separation of functions, we will receive three

boundary problems for 7-functions:

2 2
dT‘—[l “BSJT 0, de—[l O‘BSJT 0,

a’x P, a’x P,

L(0)=1,T(B) =0, 1,(0)=0,7,(B) =1,
(8)-(10)

d*x
7.(0)=0, . 7(0)=0.

2
de—[HO‘BSJI; =—asP,

0

Solution of a problem (8)

Having divided the segment [0, B] into even number of parts n we will execute replacement of a
differential problem (8) on finite-differential problem [5]. System of the linear equations concerning

values of required function for internal nodal points can be written as

T (a+bs)T +7,,=0,
L,=LT1,=0, (1)
(j=12,..,n-1),
B
where a=2+v 2,b, opv” =— — step of finite-differential grid.
it (JV) n

Having excluded known values of function on the interval ends, we will receive three-diagonal

system of the equations
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[—(a+bs) 1 0 0 0 o 5,7 [-1]
1 —(a+bys) 1 T, 0
0 0 1 —(a+bs) 1 0 0 T, =] 0| (12)
1 —(a+b,,s) 1 T2
L 0 1 _(a+bnfls)__711,n—l_ L V]

We solve this system by using idea of Cramer’s rule [8].

At first we will find Cramer’s determinant A7, . In a matrix of the system (12) its last
column we will replace with a column of free members and find determinant of the received
matrix, having opened it on the last column. As 7 is even, we will receive product of number
—1 and determinant with the upper triangular matrix, on the main diagonal of which units
are located. As such determinant is equal to 1, then AT, , = —1. Using a boundary condition
7., = 0, by means of reverse motion and simple machine-analytical transformations we will

find expressions for missing Cramer’s determinants by a recurrent formula, which follows from

(11)

{ATL“ =(a+bs)AT, - AT, "

1j+1°
(j=n-Ln-2,..,1.
As T, =1, determinant of a matrix of system (12) is equal to AD(s) = AT, ,(s).
As an example the solution of the system (12) is found at R=1.2, L= 1.5, Hy= 1.2, P;y=4; P5y=1;
6 =50; n =4. The solution of then system is provided by Cramer’s determinants which are polynomials

of variable s:

AT,, =-5.035-9.865s—4.832s” —0.654s’,

AT, =-3.400—-4.1065—0.938s’,

AT, , =-2.098-1.120s,

AT, =-1,

AT, =0,

AD = AT, , =—-5.035-9.865s —4.832s” —0.654s".

Thus, values of the T} function in each nodal point represent the relation of polynomials

AT .
L= Ag/ » (j=0..n), (14)

i. e. they are rational functions of variable s. Functions (14) have the identical denominator which is
equal to a polynomial of matrix determinant of system (12).

In Fig. 2. and Fig. 3 graphs of the real and imaginary parts of the 7,(X, s) function at various values
n and at constant complex value s = 1— i (i =+/~1) are shown.

The graphs show that the accuracy of calculations accepted for practice is provided at rather small
number n of division of the integration interval. So, even at n = 4 error of calculations for graph curves

doesn’t exceed 1 %.
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Fig. 2. Real part of 7; function

Solution of a problem (9)

Fig. 3. Imaginary part of 7; function

Differential system of linear equations for the values of 7, function at the nodal points has the

form
Tz,j+| _(a""b,s)Tz,j +Tz,j71 =0,
T2,0 = 07 TZ,n = 1’
(j=L2,..,n-1).

(15)

Having excluded known values of function on the interval ends, we will receive three-diagonal

system of the equations

[—(a+bs)
1

1
—(a+b,s)

—(a+b;s)

For this system Cramer’s determinant AT,

—_

L,
L,
0 0 T, |=|0 (16)
—(a+b, ,s) 1 T, 0
1 —(a+b, ) ]| Ly | [-1]

= —1. Really, if one opens this determinant on

the first column, we’ll receive product of number —1 and determinant with the lower triangular

matrix on which main diagonal units are located. Such determinant is equal to unit that proves

the statement.

Using a boundary condition 7,, = 0, by forward stroke we will find expressions for missing

Cramer’s determinants on a recurrent formula, which follows from (15)

AL, = (a + bfs)ATz‘f —ADL
(G=12,.n=2,n-1).

a7)

The system (16) has identical with (12) matrix of the system and its determinant.
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The solution of then system for the same as at 3.1 parameters is provided by Cramer’s determinants

which also are polynomials of variable s:

AT,, =0,

AT, =-1,

AT, , = -2.098-0.698s,

AT, , =-3.400-3.220s — 0.584s,

ATy, =-5035-9.865s—4.8325> —0.654s".

Values of the 7, function in nodal points also represent the rational expressions
=2 (o
2T (j=0..n). (18)

Solution of a problem (10)

By analogy to 3.1 and 3.2 we will write the system of the linear equations concerning values of

the 7, function in nodal points

TE'/” _(a+b/’S)TEJ +T,/—1 =-C

€

55

T,=0.7,, =0, (19)

> Te.n

(] = 1’25"'7n_1)5

where 7, =av B, ().
Having excluded zero values of function on the interval ends, we will receive three-diagonal

system of the equations

[—(a+bs) 1 0 0 0 0 T, ¢
1 —(a+bys) 1 0 0 0 T, ¢,
0 0 1 —(a+hy) 1 0 0 T, |==s|¢ |, 20
—(a+b,.,s) 1 .- Cya
L 0 1 —(a+b,9) || T LS

Now we will find Cramer’s determinant

¢ 1 0 0 0 0
¢, —(a+bys) 1 0 0 0
AT, =-s|¢, 0 1 ~(a+bys) 1 0 o | 21
[ 0 0 1 —(a+b,,s) 1
C, 0 0 0 1 —(a+b,,s)

Having opened (21) on the first column, we will find out that minors of the received sum are equals

to opposite on a sign Cramer‘s determinants of the system (12). On this basis
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n-1

AT, , = SZC‘/ATL}..
j=1

Using a boundary condition 7, = 0, by a forward stroke we will find expressions for missing

Cramer‘s determinants on a recurrent formula, which follows from (19)

{Az;w =(a+bs)AT,, ~AT, |, ~c,sAD, )

(j=12,..,n=3,n=-2).

At numeric-analytical definition of polynomials (22) their members at j > n are equal to zero,
therefore they can be dropped.
For the same as at 3.1 and 3.2 values of parameters corresponding Cramer’s determinants are

equal to

AT, =—82.1765 —11.483s” —0.08555,
AT, , =—100.6765 —67.373s> ~9.270s’,
AT, , =—69.2805 —36.8295 —5.180s’,
AT, =0.

Values of T, function in nodal points are determined by a formula

T, =—=L, (j=0.n).

Transformant of unit load capacity deviation

Load capacity of the unit is defined by a formula [1]
2n /
w= rj cos((p)d(pj(p -p, )dz. (23)
0 0
Having taken for scale of forces complex f, =n#’p, according to (3), (6), (7) we will receive a

formula for Laplace’s transformant of dimensionless load capacity deviation of the unit

— R*AY(X,s)

AW == ==L ax =W AP+ W,AP: + W, Ae, (24)
25 R(X)
where
B B 2B
T LAY S SR A 25)
o 0 o B 23 K

As T-functions are rational functions and they have common polynomial AD(s) of their
denominators, having applied to their numerators Simpson’s rule [9] for numerical integration of grid

functions, we will find first Laplace’s transformant dynamic equation of the unit

AD(s) AW + AW, (s)AP: + AW, (s)AP2 + AW, (s)Ae =0, (26)
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where AW, AW,, AW, — the polynomials of variable s received by elementary transformations at
numeric-analytical integration of Cramer’s determinants of (13), (15), (22) on Simpson’s rule calculation

process.
In that case for the examples of calculations, given above, polynomials are received

AW, (s) =5.051+4.757s +1.368s” +0.098s’,
AW, (s5) = 2.079 + 2.4385 + 0.886s” +0.098s°,
AW, (5) = 21.760s +14.6876s> +2.335s°.

Local transfer functions (25) are clearly equal to

g oAy AV A
AD AD AD

Submission about impact of number 7 on the accuracy of carrying capacity transformant for
different values of variable s give graphs in Fig. 4 and Fig. 5.

From these graphs it is visible that sufficient accuracy for practical calculations is provided at
n=4.

Transformant of longitudinal deviation
of local flow rates on inlet and outlet of unit

The mass flow rate in the direction of longitudinal coordinate on a chord rAg of the small length,

given to its angle, is defined by a formula [1]

A
o+E

r 2 op
=————— [ »wpZLag, 2
= uwTAe IM, P ® @7
ey

where R,T,u —universal gas constant, absolute temperature of gas and its viscosity.
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Assuming that temperature and viscosity as constants and having taken for the scale of mass flow

3.2

hp,
6URT

rates a complex g, = , we will receive a formula for defining the corresponding dimensionless

mass flow rate in any cross section of the unit

op*
=—RH~—. 28
Q oz @8)

Taking into account (3), (5), (6) after linearization of formula (28) Laplace’s transformant of flow

rate deviation can be written as

— — L dAY
AQ(X,S)——[DQOAE +HOW . (29)
where Dy, =3H, (P~ Py )/ B.

Transformant of a local flow rate deviation at a unit inlet

For definition of this transformant we will use the relation (7). We will find derivative of function
AY using initial unilateral trinomial formulas for Cramer’s determinants of the corresponding grid
T-functions [5]

_dAT(0.5) —AT,, +4AT), ~3AT,,

=i 5 ., (=12¢). (30)

Formulas (30) provide the second order of accuracy concerning a grid step v.
Using (29), (30) we will receive a second communication formula of unit model for transformant
of input flow rate deviation AQ,(s) with corresponding transformants of eccentricity and both pressures

at inlet and outlet of unit

AD(s) El + AQI,I (S)El + AQ],Z(S)IPZ + AQI,( (S)E =0, (31)

where AQ,(s)=2F,H,AD, YRGS 2P, HAD, ,, AQ,  (s) = DyAD + H{AD,,.

For the above examples we obtain polynomials

AQ, (s)=79.65+316.1s+237.65” +43.425’,
AQ,,(s)=-10.52+3.857s,
AQ, . (s)=-261.0+1141.85-857.9s’ ~156.0s’.

The submission of influence of number 7 on accuracy of calculation of a transformant of input
local flow rate at various values of Laplace’s variable s is given by graphs in Fig. 6 and Fig. 7.
The graphs show that to ensure acceptable accuracy of the real part of Q, function n =4 is enough,

the imaginary part in this case requires n > 4.

Transformant of a local flow rate deviation on a unit outlet

We will define derivative of function (29) using end unilateral trinomial formulas for Cramer’s

determinants of the corresponding grid 7-functions [5]
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dAT,(B,s) 3AT. —4AT.  +AT,
_ ,( s) ~ jan Jjon=l Jon=2 , (j=12¢). (32)

> dx by

Formulas (32) also have the second order of accuracy.
As a result we will receive a third communication formula of unit model for transformant of an

output flow rate deviation AQ,(s) with corresponding transformants of the unit

AD(5)AQ, = AQ, [(5)AP: +AQ, , ()AP: +[ Dy, +AQ, , (5) ] A,
where AQ, (s) = _ZPIOH(?ADZ,;/ A0, ,(s) = _2onH3AD2,2> AQ, (s)= _HSADz,s'

For the examples given above polynomials are received

AQ,,(5) = 42.07—24.78s,
AQ,,(s) =—19.91-96.295 — 67.24s* —10.86s",
AQ, . (s)=—261.0—23.59s —29.47s> ~2.261s’.

Submission of influence of number n on accuracy of calculation of a transformant of output local
flow rate at various values of Laplace’s variable s is given in Fig. 8 and Fig. 9.

For the given values of parameters sufficient accuracy for practice is provided at n = 4-8.

Conclusion

The equations (26), (31), (32) allow to establish relations of integro-differential Laplace’s
transformants of carrying capacity AW (s) and local mass flow rates AQ,(s), AQ,(s) at inlet and outlet
of the unit with transformants E(s), EI(S), Ez(s) of eccentricity and pressures at inlet and outlet of
unit. Required accuracy of the calculation of 7-functions can be provided by selecting the number 7 of
partitions of integration interval.

These equations give ready formulas for calculating the dynamic criteria containing such units of
radial one-row, multi-row ordinary passive or active (with zero or negative compliance of carrier gas
films [10]) externally pressurized and other gas bearings, in which radial movement of their movable

elements is made.
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YucsieHHO-aHAJTM THYECKUI MEeTO Onpeae/IeHus
YPABHEHUM CBSA3H JIAMJIACOBBIX TPAHCHOPMAHT
0000111eHHOT0 PaIMaJIbHOr0 0JI0KA
ra3ocTaTu4ecKuX NOJAIMITHUKOB
B.A. Konusinko

Cubupckutl pedepanvrblil yHugepcumenmn,
Poccus 660041, Kpacnospck, np. Céo0600mbiil, 79

Ilpeonooicen yucrenHo-aHarumuyeckuli Memoo onpeoeieHus J1aniacos8vix MmMpaHchopmanm
OuHAMUYeCKUX YHKYull 0N YHUBEPCAIbHO20 PAOUAIbHO20 DIIOKA 2A30CMAMUYeCKUX NOOUUNHUKOS,
NOOBUNCHBITL DNIEMEHN KOMOPO2O Cosepuiaen Mavle paouaibHvle KOIeOaHus 8 OKPeCmHOCU e20
YEeHMPATbHO2O NOJIONHCEHUS.

Memoo u nonyuennvie 3a8UcUMOCmU NO360AAIOM YCMAHOBUMY C653b UHMEZPO-OUpDepeHyuaTbHbIX
JANAACOBBIX MPAHCHOPMAHM HeCywell CROCOOHOCIU U IOKATbHBIX MACCOBBIX PACX0008 HA 6X00e U
gvixo0e O10Ka ¢ MPAHCHOPMARMAMYU IKCYEHMPUCUMEMA U 0aGIeHUll CMA3bIBAIOWe20 2a3a HA 6X00e
u gvixooe bnoka. Ilokasano, umo noKkaibHble nepedamounvle QyHKYUYU 610Ka Npedcmasiam cooou
PayuoHanbHvie QYHKYUuU nepemeHHol npeobpaszosanusa Jlaniaca u ymo ece maxue QyHKyuU umerom
00wl 3SHAMEHAMENb 8 GUOE NOTUHOMA OMHOCUMETILHO IMOTL NePeMeHHOI.

Memoo nozeonsem evluuciamo mpebyemviti Kpumepuii Kavecmsda OUHAMUKU HOOUWUNHUKOS,
cooeporcauyux OanHwlll 610K, ¢ Haneped 3a0aHHOU MOYHOCIBIO.

Hailoennsie ypasuenus ceaseti daiom comogvle hopmynvl O pacuema Kpumepues Kauecmsd
OUHAMUKU cOOepIHCauux maxkou 610K paouaibHbiX 0OHOPAOHBIX, MHO2OPAOHBIX ODbIYHBIX NACCUBHBLX
UNU AKMUBHBIX 2A30CMAMUYECKUX NOOUUNHUKOS, 8 KOMOPBIX CO8ePULAemcs paOUdIbHOe 08UNCEHUe
UX NOOBUICHBIX INEMEHIMO8.

Knioueswie cnosa: eazocmamuueckuil NOOWUNHUK, YUCLEHHO-AHATUMUYECKUT MemOo0, OUHAMUYECKUe
GyHxyuu.




