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The design of active hydrostatic radial bearing with smooth cylindrical surfaces and lubricant output 
flow restrictors in the form of movable rings on membrane suspension is presented.
The device is several times less power-consuming compared with known devices of flow control. The 
bearing has a negative and zero compliance (infinite stiffness), and therefore can be used in machine 
tools to suppress the negative influence of elastic system deformation on the accuracy of processing.
On the basis of two-dimensional model of lubricant flow developed a mathematical model, method 
and procedure for calculating the bearing load capacity and flow rate. It is established, that the 
calculation of static characteristics of bearing in the entire range of operating loads can be correctly 
performed only on the base of two-dimensional model. For small eccentricities the characteristic of 
zero and negative compliance can be calculated with sufficient accuracy by the simplified method, 
based on one-dimensional motion of lubricant flow. Bearing of zero or negative compliance have 
load capacity range, which is 20  – 50% more than conventional bearings of the same overall 
dimensions. The setting of input throttling slits resistance decisive influence on the optimal static 
characteristics of the bearing. The optimal values of its resistance for conventional and active 
bearing are practically identical.

Keywords: energy-saving, hydrostatic bearing, zero compliance, negative compliance, infinite 
stiffness, smooth cylindrical surface.

Introduction

In the radial gas and hydrostatic bearings (HB) with input flow regulators (AGH-IR), which are 
able to exert an active influence on the performance of important characteristics, in particular the 
significant decrease in compliance of the load-carrying lubricant film to zero and negative values 
[1]. These bearings can be used in machine tools in order to diminish the negative impact of the 
deformation of the elastic system on accuracy. The active bearing of this type characterized by two 
major disadvantages – to maintain their working ability requires a considerable flow rate [2] and in this 
connection bearing shafts may make limited movement only. 

In [3], an opposite principle to control the flow of hydraulic fluid, which is used in bearings the 
restrictors of output lubricant flow (AGH-OR). In comparison with the AGH-IR such designs have a 
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much better static characteristics and have no disadvantages of AGH-IR [4]. In addition, for example, 
not full scope radial or open thrust AGH-OR with little or no increase in energy consumption can make 
a significant movement of mobile elements, in which the AGH-IR would obviously inoperable [5]. This 
unique property of AGH-OR opens up the possibility of their to use not only in machine tools, but in 
micro shock absorbers, energy-saving hovercrafts, low flow rate aerostatic suspensions of ground and 
suspended trains and high-load machines.

In [4] presents the method of calculating the characteristics profiled AGH-OR on the basis of 
one-dimensional flow model of working fluid in a thin lubricating gaps. In conventional radial bearing 
more often used smooth cylindrical compounds, which are distinguished by simplicity of design and 
manufacturing technology. For such GH one-dimensional models are not suitable because it does not 
take into account the influence of circumferential lubricant overflows on the characteristics of bearings, 
which leads to significant errors of calculations. In this paper presents design, mathematical model, 
calculating procedure and results of study for radial hydrostatic bearing of this type with smooth 
cylindrical working surfaces.

Principle of the bearing

In Fig. 1 shows a longitudinal section of the bearing. The design contains a shaft 2 and the housing 
1 with a throttling slits 3, through which fluid from source under pressure pS enters into the bearing. At 
the ends of housing there are circular protrusions on the inner side of which are a ring-type membranes 
4, forming with the housing and protrusions the cavity 5, hydraulically connected with the slits 3. To 
the membrane tightly attached rigid rings 6 with cylindrical surfaces forming with the housing axial 
gaps 8. The inner surface of the housing 1 and the surface of shaft 2 form slot gap 9 of main load-
carrying lubricant film of thickness h, and the surface of the shaft and ring elements 6 – end load-
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carrying lubricant film with thickness ht. Membrane hermetically attached to the outer edge of the 
housing and by inner edge – to the rings.

Bearing operates as follows. The pumped lubricant, overcoming the hydraulic resistance of slits 3, 
comes into a thin lubricating gap of cavities 5 and through the channels 8 in carrying lubricating gaps 
9 and 7, and then flows from the bearing. Hydraulic forces which created by pressure on the membrane 
in cavities 5 and gaps 7, counterbalanced by force of elastic membrane material deformation. The 
integral reaction of the pressure forces on the rings 6 in gaps of the cavities 5 is always greater than the 
same reaction from side of gaps 7, as can be verified by analyzing the pressure distribution diagrams of 
lubrication in these gaps. Therefore rings 6 will always carry opposite direction against the direction 
of external force vector f, thereby creating a greater obstruction for lubricant outflow from the bearing 
and raising the hydraulic force of the impact on displaced under the load shaft. Depending on the 
membrane flexibility, affecting the motion characteristics of rings 6, it provides decrease of capacity 
to zero and negative values.

Mathematical modeling

In modeling of AGH-OR work expected that observed parallelism of axes housing, shaft and 
movable rings (Fig. 1). Calculations were carried out using dimensionless quantities. For the scales 
adopted: radius r0 of shaft – for linear dimensions, supply pressure pS – for pressures, πr0

2pS – for loads 
and forces, πh0

3ps/6µ – for volumetric flow rates, h0 – for gaps, clearances and eccentricities of moving 
parts, where h0 – thickness h of lubricant film in the coaxial arrangement of movable elements (at f = 0), 
μ – viscosity of lubricant. Dimensionless variables are indicated by capital letters. 

Due to the symmetry of bearing was considered his right half (Fig. 1). For the central (c-area) and 
end (t-area) parts of the base gap and for gap of cavity 5 (m-area), introduced local coordinate systems. 
Longitudinal coordinate Z is measured from the left edge of areas, and the circumferential coordinate 
φ from the line in which indicated vector of external force f.

Function of dimensionless pressure P(Z, φ) in thin lubricating gaps for an incompressible lubricant 
satisfies the stationary differential Reynolds equation [6]
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where L – dimensionless half-length of bearing (summary length of c-area and t-area), L1 – dimensionless 
length of rings (length of c-area and m-area). The first and last of them due to the symmetry of function 
P with respect to the central longitudinal and transverse planes of bearing on the line of intersection of 
which lies the external force vector f, the second defines a function of pressure at the outlet of lubricant 
duct.
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Since the cavity 5 is stagnant, then at any point φj on the circle of pairing membranes and bearing 
housing, flow rate is absent
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System of linear equations (9) is solved by matrix sweep method [7], using the recurrence 

formulas 

1 , ( 1, 2,3,..., 1), (10)i i i iP X P Y i n− = + = −  

where Xi, Yi – sweep matrixes and vectors. 

The system of equations (9) supplemented by vector equation 

0 1 24 3 0, (11)P P P− + − =  

which is a finite-difference analogue of the first boundary condition (2) for Z = 0. 

In system of two linear matrix equations (11) and (10) for i = 1, after elimination of P2 found 

0 1
12 , (12)
2

P E A P⎛ ⎞= +⎜ ⎟
⎝ ⎠  

where E – identity matrix. 

Comparing (12), (10) for i = 1, found 

 1 1
12 , 0. (13)
2

X E A Y⎛ ⎞= + =⎜ ⎟
⎝ ⎠  

After substituting (10) into (9) found the recurrence formulas 

( ) 1
1 1 1, , ( 1, 2,..., 1). (14)i i i i iX A X Y X Y i n−
+ + += − + = = −  

Next, performed a direct sweep by (13) and (14) and were found sweep matrixes X2, X3, …, 

Xn and vectors Y2, Y3, …, Yn.  

For perform of reverse sweep requires vector Pn. To determine it used the flow rate balance 

equation (5) through the gaps in narrow sectors [φj – τ/2, φj + τ/2]. The general formula for 

determining flow rate through a cross section Z is given by [6] 
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where Rk – inner or outer radius of the ring (inner radius Rk = 1, outer radius Rk = Rm).  

Since the integration step τ is a small quantity, instead of (15) used simplified formula  
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Dependences (6) and (7) provided a formula for local flow rates at the inlet of t-area  
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So far as function (7) does not depend on the longitudinal coordinate, in accordance with (16) 

local flow rates at the entrance of cavity 5  

, (0) 0. (18)m jQ =  

Local flow rates on the boundary Z = L2 determined by means of the finite-difference formula 

for the derivative at the right endpoint [8] 
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Substituting (19) in (16), found  
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−
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In the absence of external load the pressure in channel (8) and at entrance to all areas does not 

depend of circumferential coordinate and is equal to 

( ), 0,1,2,..., 1, ,j
nP Const j m mχ= = = −  

So full flow rate through the throttling slit is determined by the formula [6] 
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 In the coaxial arrangement of the movable elements in c-area Qc = 0 and in t-area in view of (6) 
and (15) total flow rate through one end of the bearing is equal to
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 In the coaxial arrangement of the movable elements in c-area Qc = 0 and in t-area in view of 

(6) and (15) total flow rate through one end of the bearing is equal to 

2 3
30

0 0
1 10

1 . (22)
2

t
t t

HQ d H
L L

π χ χϕ
π

⎛ ⎞
= − − =⎜ ⎟

⎝ ⎠
∫  

Substituting founded flow rate dependences in equation (5), obtained a formula for calculating 

the parameter of throttling slit 

  ( ) ( )
3

3 0
0

1 1

1 , . (23)
1

t
n t n

HA H A
L L

χχχ
χ

− = =
−  

Taking this into account the local flow rates through the throttling slit are determined by the 

formula 

( ), 1 . (24)
2

jn
n j n

AQ Pτ
π

= −  

After substituting (17), (18) (20), (24) into equation (15) had obtained a system of equations 

( ) ( )
3 3
,

1 2
1

1 3 4 0. (25)
2

t j jj j j j j
n n n n n n

H H
A P P P P P

L ν − −− − − − + =  

( 0,1, 2,..., )j m=  

In matrix-vector form (25) is equal to  

1 24 , (26)n n nBP P P С− −− + =  

where B diagonal matrix, C – vector 

0 1 2 0 1 2{ , , ,..., }, ( , , ,..., ),m n mB diag b b b b C A c c c c= =  

3
,

3
1

2 , 3 .t j
j j j n

j

H
с b с A

H L
ν ⎛ ⎞

= = + +⎜ ⎟⎜ ⎟
⎝ ⎠

 

Equations (9), (10) for i = n – 1 and (26) are given a system of matrix equations 

	 (22)



– 104 –

Vladimir A. Kodnyanko. Static Characteristics of Active Hydrostatic Two-Row Radial Bearing with Restriction...

Substituting founded flow rate dependences in equation (5), obtained a formula for calculating the 
parameter of throttling slit

 

 

8 

 

 In the coaxial arrangement of the movable elements in c-area Qc = 0 and in t-area in view of 

(6) and (15) total flow rate through one end of the bearing is equal to 

2 3
30

0 0
1 10

1 . (22)
2

t
t t

HQ d H
L L

π χ χϕ
π

⎛ ⎞
= − − =⎜ ⎟

⎝ ⎠
∫  

Substituting founded flow rate dependences in equation (5), obtained a formula for calculating 

the parameter of throttling slit 

  ( ) ( )
3

3 0
0

1 1

1 , . (23)
1

t
n t n

HA H A
L L

χχχ
χ

− = =
−  

Taking this into account the local flow rates through the throttling slit are determined by the 

formula 

( ), 1 . (24)
2

jn
n j n

AQ Pτ
π

= −  

After substituting (17), (18) (20), (24) into equation (15) had obtained a system of equations 

( ) ( )
3 3
,

1 2
1

1 3 4 0. (25)
2

t j jj j j j j
n n n n n n

H H
A P P P P P

L ν − −− − − − + =  

( 0,1, 2,..., )j m=  

In matrix-vector form (25) is equal to  

1 24 , (26)n n nBP P P С− −− + =  

where B diagonal matrix, C – vector 

0 1 2 0 1 2{ , , ,..., }, ( , , ,..., ),m n mB diag b b b b C A c c c c= =  

3
,

3
1

2 , 3 .t j
j j j n

j

H
с b с A

H L
ν ⎛ ⎞

= = + +⎜ ⎟⎜ ⎟
⎝ ⎠

 

Equations (9), (10) for i = n – 1 and (26) are given a system of matrix equations 

	 (23)

Taking this into account the local flow rates through the throttling slit are determined by the 
formula

 

 

8 

 

 In the coaxial arrangement of the movable elements in c-area Qc = 0 and in t-area in view of 

(6) and (15) total flow rate through one end of the bearing is equal to 

2 3
30

0 0
1 10

1 . (22)
2

t
t t

HQ d H
L L

π χ χϕ
π

⎛ ⎞
= − − =⎜ ⎟

⎝ ⎠
∫  

Substituting founded flow rate dependences in equation (5), obtained a formula for calculating 

the parameter of throttling slit 

  ( ) ( )
3

3 0
0

1 1

1 , . (23)
1

t
n t n

HA H A
L L

χχχ
χ

− = =
−  

Taking this into account the local flow rates through the throttling slit are determined by the 

formula 

( ), 1 . (24)
2

jn
n j n

AQ Pτ
π

= −  

After substituting (17), (18) (20), (24) into equation (15) had obtained a system of equations 

( ) ( )
3 3
,

1 2
1

1 3 4 0. (25)
2

t j jj j j j j
n n n n n n

H H
A P P P P P

L ν − −− − − − + =  

( 0,1, 2,..., )j m=  

In matrix-vector form (25) is equal to  

1 24 , (26)n n nBP P P С− −− + =  

where B diagonal matrix, C – vector 

0 1 2 0 1 2{ , , ,..., }, ( , , ,..., ),m n mB diag b b b b C A c c c c= =  

3
,

3
1

2 , 3 .t j
j j j n

j

H
с b с A

H L
ν ⎛ ⎞

= = + +⎜ ⎟⎜ ⎟
⎝ ⎠

 

Equations (9), (10) for i = n – 1 and (26) are given a system of matrix equations 

	 (24)

After substituting (17), (18) (20), (24) into equation (15) had obtained a system of equations

 

 

8 

 

 In the coaxial arrangement of the movable elements in c-area Qc = 0 and in t-area in view of 

(6) and (15) total flow rate through one end of the bearing is equal to 

2 3
30

0 0
1 10

1 . (22)
2

t
t t

HQ d H
L L

π χ χϕ
π

⎛ ⎞
= − − =⎜ ⎟

⎝ ⎠
∫  

Substituting founded flow rate dependences in equation (5), obtained a formula for calculating 

the parameter of throttling slit 

  ( ) ( )
3

3 0
0

1 1

1 , . (23)
1

t
n t n

HA H A
L L

χχχ
χ

− = =
−  

Taking this into account the local flow rates through the throttling slit are determined by the 

formula 

( ), 1 . (24)
2

jn
n j n

AQ Pτ
π

= −  

After substituting (17), (18) (20), (24) into equation (15) had obtained a system of equations 

( ) ( )
3 3
,

1 2
1

1 3 4 0. (25)
2

t j jj j j j j
n n n n n n

H H
A P P P P P

L ν − −− − − − + =  

( 0,1, 2,..., )j m=  

In matrix-vector form (25) is equal to  

1 24 , (26)n n nBP P P С− −− + =  

where B diagonal matrix, C – vector 

0 1 2 0 1 2{ , , ,..., }, ( , , ,..., ),m n mB diag b b b b C A c c c c= =  

3
,

3
1

2 , 3 .t j
j j j n

j

H
с b с A

H L
ν ⎛ ⎞

= = + +⎜ ⎟⎜ ⎟
⎝ ⎠

 

Equations (9), (10) for i = n – 1 and (26) are given a system of matrix equations 

	 (25)

In matrix-vector form (25) is equal to 

 

 

8 

 

 In the coaxial arrangement of the movable elements in c-area Qc = 0 and in t-area in view of 

(6) and (15) total flow rate through one end of the bearing is equal to 

2 3
30

0 0
1 10

1 . (22)
2

t
t t

HQ d H
L L

π χ χϕ
π

⎛ ⎞
= − − =⎜ ⎟

⎝ ⎠
∫  

Substituting founded flow rate dependences in equation (5), obtained a formula for calculating 

the parameter of throttling slit 

  ( ) ( )
3

3 0
0

1 1

1 , . (23)
1

t
n t n

HA H A
L L

χχχ
χ

− = =
−  

Taking this into account the local flow rates through the throttling slit are determined by the 

formula 

( ), 1 . (24)
2

jn
n j n

AQ Pτ
π

= −  

After substituting (17), (18) (20), (24) into equation (15) had obtained a system of equations 

( ) ( )
3 3
,

1 2
1

1 3 4 0. (25)
2

t j jj j j j j
n n n n n n

H H
A P P P P P

L ν − −− − − − + =  

( 0,1, 2,..., )j m=  

In matrix-vector form (25) is equal to  

1 24 , (26)n n nBP P P С− −− + =  

where B diagonal matrix, C – vector 

0 1 2 0 1 2{ , , ,..., }, ( , , ,..., ),m n mB diag b b b b C A c c c c= =  

3
,

3
1

2 , 3 .t j
j j j n

j

H
с b с A

H L
ν ⎛ ⎞

= = + +⎜ ⎟⎜ ⎟
⎝ ⎠

 

Equations (9), (10) for i = n – 1 and (26) are given a system of matrix equations 

	 (26)

where B diagonal matrix, C – vector

 

 

8 

 

 In the coaxial arrangement of the movable elements in c-area Qc = 0 and in t-area in view of 

(6) and (15) total flow rate through one end of the bearing is equal to 

2 3
30

0 0
1 10

1 . (22)
2

t
t t

HQ d H
L L

π χ χϕ
π

⎛ ⎞
= − − =⎜ ⎟

⎝ ⎠
∫  

Substituting founded flow rate dependences in equation (5), obtained a formula for calculating 

the parameter of throttling slit 

  ( ) ( )
3

3 0
0

1 1

1 , . (23)
1

t
n t n

HA H A
L L

χχχ
χ

− = =
−  

Taking this into account the local flow rates through the throttling slit are determined by the 

formula 

( ), 1 . (24)
2

jn
n j n

AQ Pτ
π

= −  

After substituting (17), (18) (20), (24) into equation (15) had obtained a system of equations 

( ) ( )
3 3
,

1 2
1

1 3 4 0. (25)
2

t j jj j j j j
n n n n n n

H H
A P P P P P

L ν − −− − − − + =  

( 0,1, 2,..., )j m=  

In matrix-vector form (25) is equal to  

1 24 , (26)n n nBP P P С− −− + =  

where B diagonal matrix, C – vector 

0 1 2 0 1 2{ , , ,..., }, ( , , ,..., ),m n mB diag b b b b C A c c c c= =  

3
,

3
1

2 , 3 .t j
j j j n

j

H
с b с A

H L
ν ⎛ ⎞

= = + +⎜ ⎟⎜ ⎟
⎝ ⎠

 

Equations (9), (10) for i = n – 1 and (26) are given a system of matrix equations Equations (9), (10) for i = n – 1 and (26) are given a system of matrix equations
 

 

9 

 

1 2

1

1 2

0,
,

4

n n n

n n n n

n n n

P AP P
X P Y P
BP P P С

− −

−

− −

+ + =⎧
⎪ + =⎨
⎪ − + =⎩

 

for determination of unknown vector  

( ) ( )1 , 4 .n n nP B E DX C DY D E A−= − − + = +  

Using (10) performed reverse sweep and founded vectors Pn-1, Pn-2,…, P1, P0.  

The resulting solution allowed define load-carrying capacity of lubricating area by the general 

formula [6] 

0 0

2 ( , ) ,
a

k
k k

RW Cos P Z dZ d
π

ϕ ϕ ϕ
π

= ∫ ∫  

where a – length of area. 

For t-area according to (6)  

1

1 1 1
1

10 0 0

2 ( ) ( ) ,
L

t n n
L Z L LW Cos P dZ d P Cos d J

L

π π

ϕ ϕ ϕ ϕ ϕ ϕ
π π π

−
= = =∫ ∫ ∫  

where 

1
0

( ) . (27)nJ P Cos d
π

ϕ ϕ ϕ= ∫  
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The force balance equation of the ring, commits to the membrane-hydrostatic suspension 

small radial displacement, based on the use of Hooke's law [11]. As mentioned above, the direction 

of ring movement and external force vector are opposite. Therefore, the eccentricity εm has non-

positive value (εm ≤ 0) and is associated with the acting forces on the ring by relation 

0, (28)m m tF W W− + =  

where  

/ ε ,m m mF K= −  

– elastic force of membrane, Km = Const – dimensionless compliance of the membrane material. 

 

Calculation procedure 

In calculations were used the input dimensionless parameters: pressure coefficient χ∈[0, 1], 

lengths L and L1, ring radius Rm, clearances Ht0 and Hm0, compliance coefficient of membranes Km, 

n and m numbers of segments for finite-difference grid. Main performance characteristics of interest 

in the present study are load capacity W, flow rate Q, eccentricities ε and εt. 

In calculation of dependences were varied eccentricity εm with small step throughout the 

range [–Hm0, 0]. Successively changing this parameter and using obvious connection of 

eccentricities 

ε ε εm t= +  

for each fixed εm by bisection numerical method [12] found the solution of nonlinear equation (28) 

in form 

(ε ) 0 (29)t m m tG F W W= − + =  

Full load capacity of bearing calculated by formula

 

 

10 

 

2

0 00 0

2 2( , ) ( ) .
9

L m n
j

с j i i
j i

W Cos P Z dZ d k Cos j k P
π ντϕ ϕ ϕ τ

π π = =

⎡ ⎤= = ⎢ ⎥⎣ ⎦
∑ ∑∫ ∫  

Full load capacity of bearing calculated by formula 

( )2 .t cW W W= +  

To determine the full volumetric flow rate through the bearing used formula 

3 3 3
,

01 10 0

2 2 24 .
3

m
jt

t t t n j t j n
j

PQ Q H d H P d k H P
Z L L

π π τϕ ϕ
π π π =

∂
= = − = =

∂ ∑∫ ∫  

The force balance equation of the ring, commits to the membrane-hydrostatic suspension 

small radial displacement, based on the use of Hooke's law [11]. As mentioned above, the direction 

of ring movement and external force vector are opposite. Therefore, the eccentricity εm has non-

positive value (εm ≤ 0) and is associated with the acting forces on the ring by relation 

0, (28)m m tF W W− + =  

where  

/ ε ,m m mF K= −  

– elastic force of membrane, Km = Const – dimensionless compliance of the membrane material. 

 

Calculation procedure 

In calculations were used the input dimensionless parameters: pressure coefficient χ∈[0, 1], 

lengths L and L1, ring radius Rm, clearances Ht0 and Hm0, compliance coefficient of membranes Km, 

n and m numbers of segments for finite-difference grid. Main performance characteristics of interest 

in the present study are load capacity W, flow rate Q, eccentricities ε and εt. 

In calculation of dependences were varied eccentricity εm with small step throughout the 

range [–Hm0, 0]. Successively changing this parameter and using obvious connection of 

eccentricities 

ε ε εm t= +  

for each fixed εm by bisection numerical method [12] found the solution of nonlinear equation (28) 

in form 

(ε ) 0 (29)t m m tG F W W= − + =  

To determine the full volumetric flow rate through the bearing used formula

 

 

10 

 

2

0 00 0

2 2( , ) ( ) .
9

L m n
j

с j i i
j i

W Cos P Z dZ d k Cos j k P
π ντϕ ϕ ϕ τ

π π = =

⎡ ⎤= = ⎢ ⎥⎣ ⎦
∑ ∑∫ ∫  

Full load capacity of bearing calculated by formula 

( )2 .t cW W W= +  

To determine the full volumetric flow rate through the bearing used formula 

3 3 3
,

01 10 0

2 2 24 .
3

m
jt

t t t n j t j n
j

PQ Q H d H P d k H P
Z L L

π π τϕ ϕ
π π π =

∂
= = − = =

∂ ∑∫ ∫  

The force balance equation of the ring, commits to the membrane-hydrostatic suspension 

small radial displacement, based on the use of Hooke's law [11]. As mentioned above, the direction 

of ring movement and external force vector are opposite. Therefore, the eccentricity εm has non-

positive value (εm ≤ 0) and is associated with the acting forces on the ring by relation 

0, (28)m m tF W W− + =  

where  

/ ε ,m m mF K= −  

– elastic force of membrane, Km = Const – dimensionless compliance of the membrane material. 

 

Calculation procedure 

In calculations were used the input dimensionless parameters: pressure coefficient χ∈[0, 1], 

lengths L and L1, ring radius Rm, clearances Ht0 and Hm0, compliance coefficient of membranes Km, 

n and m numbers of segments for finite-difference grid. Main performance characteristics of interest 

in the present study are load capacity W, flow rate Q, eccentricities ε and εt. 

In calculation of dependences were varied eccentricity εm with small step throughout the 

range [–Hm0, 0]. Successively changing this parameter and using obvious connection of 

eccentricities 

ε ε εm t= +  

for each fixed εm by bisection numerical method [12] found the solution of nonlinear equation (28) 

in form 

(ε ) 0 (29)t m m tG F W W= − + =  

The force balance equation of the ring, commits to the membrane-hydrostatic suspension small 
radial displacement, based on the use of Hooke's law [11]. As mentioned above, the direction of ring 
movement and external force vector are opposite. Therefore, the eccentricity εm has non-positive value 
(εm ≤ 0) and is associated with the acting forces on the ring by relation

 

 

10 

 

2

0 00 0

2 2( , ) ( ) .
9

L m n
j

с j i i
j i

W Cos P Z dZ d k Cos j k P
π ντϕ ϕ ϕ τ

π π = =

⎡ ⎤= = ⎢ ⎥⎣ ⎦
∑ ∑∫ ∫  

Full load capacity of bearing calculated by formula 

( )2 .t cW W W= +  

To determine the full volumetric flow rate through the bearing used formula 

3 3 3
,

01 10 0

2 2 24 .
3

m
jt

t t t n j t j n
j

PQ Q H d H P d k H P
Z L L

π π τϕ ϕ
π π π =

∂
= = − = =

∂ ∑∫ ∫  

The force balance equation of the ring, commits to the membrane-hydrostatic suspension 

small radial displacement, based on the use of Hooke's law [11]. As mentioned above, the direction 

of ring movement and external force vector are opposite. Therefore, the eccentricity εm has non-

positive value (εm ≤ 0) and is associated with the acting forces on the ring by relation 

0, (28)m m tF W W− + =  

where  

/ ε ,m m mF K= −  

– elastic force of membrane, Km = Const – dimensionless compliance of the membrane material. 

 

Calculation procedure 

In calculations were used the input dimensionless parameters: pressure coefficient χ∈[0, 1], 

lengths L and L1, ring radius Rm, clearances Ht0 and Hm0, compliance coefficient of membranes Km, 

n and m numbers of segments for finite-difference grid. Main performance characteristics of interest 

in the present study are load capacity W, flow rate Q, eccentricities ε and εt. 

In calculation of dependences were varied eccentricity εm with small step throughout the 

range [–Hm0, 0]. Successively changing this parameter and using obvious connection of 

eccentricities 

ε ε εm t= +  

for each fixed εm by bisection numerical method [12] found the solution of nonlinear equation (28) 

in form 

(ε ) 0 (29)t m m tG F W W= − + =  

	 (28)

where 

 

 

10 

 

2

0 00 0

2 2( , ) ( ) .
9

L m n
j

с j i i
j i

W Cos P Z dZ d k Cos j k P
π ντϕ ϕ ϕ τ

π π = =

⎡ ⎤= = ⎢ ⎥⎣ ⎦
∑ ∑∫ ∫  

Full load capacity of bearing calculated by formula 

( )2 .t cW W W= +  

To determine the full volumetric flow rate through the bearing used formula 

3 3 3
,

01 10 0

2 2 24 .
3

m
jt

t t t n j t j n
j

PQ Q H d H P d k H P
Z L L

π π τϕ ϕ
π π π =

∂
= = − = =

∂ ∑∫ ∫  

The force balance equation of the ring, commits to the membrane-hydrostatic suspension 

small radial displacement, based on the use of Hooke's law [11]. As mentioned above, the direction 

of ring movement and external force vector are opposite. Therefore, the eccentricity εm has non-

positive value (εm ≤ 0) and is associated with the acting forces on the ring by relation 

0, (28)m m tF W W− + =  

where  

/ ε ,m m mF K= −  

– elastic force of membrane, Km = Const – dimensionless compliance of the membrane material. 

 

Calculation procedure 

In calculations were used the input dimensionless parameters: pressure coefficient χ∈[0, 1], 

lengths L and L1, ring radius Rm, clearances Ht0 and Hm0, compliance coefficient of membranes Km, 

n and m numbers of segments for finite-difference grid. Main performance characteristics of interest 

in the present study are load capacity W, flow rate Q, eccentricities ε and εt. 

In calculation of dependences were varied eccentricity εm with small step throughout the 

range [–Hm0, 0]. Successively changing this parameter and using obvious connection of 

eccentricities 

ε ε εm t= +  

for each fixed εm by bisection numerical method [12] found the solution of nonlinear equation (28) 

in form 

(ε ) 0 (29)t m m tG F W W= − + =  

– elastic force of membrane, Km = Const – dimensionless compliance of the membrane material.

Calculation procedure

In calculations were used the input dimensionless parameters: pressure coefficient χ∈ [0, 1], 
lengths L and L1, ring radius Rm, clearances Ht0 and Hm0, compliance coefficient of membranes Km, n 
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In calculation of dependences were varied eccentricity εm with small step throughout the 

range [–Hm0, 0]. Successively changing this parameter and using obvious connection of 

eccentricities 

ε ε εm t= +  

for each fixed εm by bisection numerical method [12] found the solution of nonlinear equation (28) 

in form 

(ε ) 0 (29)t m m tG F W W= − + =  	 (29)

for one unknown variable εt∈[a, b], where a = 0, b = Ht0. Process was stopped when b – a < 10-5.

Simulation results

In Fig. 2 shows plots of function G(εt) of equation (29) for different values of eccentricity εm.
It is seen that the curves on the interval εt∈[0, Ht0] are continuous, have a unique point of 

intersection with the horizontal axis (the root of the equation) or on this segment does not intersect it 
at all (no root). The latter refers to specific cases of contact of rings working surfaces and the shaft, in 
which the bearing is losing efficiency.

The effect on the characteristics of the circumferential lubrication overflows in interrow area 
can be seen in Fig. 3, which shows the comparative dependences ε(W), obtained in [4] on the basis of 
one-dimensional model (1-D model) and calculated out in this work by using two-dimensional model 
lubricant flow (2-D model).

It is seen that for bearings with smooth working surfaces using a one-dimensional flow model of 
interrow area gives overestimation of load capacity of 1.5 – 2 times.

Distortion of characteristics is particularly noticeable at moderate and high loads and for low 
capacity Km of membranes, when bearing still has positive compliance K = ∂ε/∂W. With the increase 
Km error in the calculation of compliance K in small eccentricities area observably decreases and at 
bearing work on modes of zero and negative susceptibility (K ≤ 0) one-dimensional model gives fairly 
satisfactory results. 
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Fig. 2. Plots of function G(εt) 

εm = -0.6

εm = -0.9

εm = -0.3

G(εt)

εt

Fig. 2. Plots of function G(εt)



– 107 –

Vladimir A. Kodnyanko. Static Characteristics of Active Hydrostatic Two-Row Radial Bearing with Restriction...

For moderate and large eccentricities the error is large for any values of the parameter Km. An 
analysis of the data for the various teachings of elongation L, at high loads, even for short bearing (L < 
0.6) on the charts there is a noticeable difference curves.

 Analysis of the calculated dependences shows that the decisive influence on the static characteristics 
has a pressure parameter χ, which defines setting for input throttling slit resistance. It is known that for 
conventional bearing function of eccentricity ε(χ), the load capacity W(χ) and compliance K(χ) are of 
an extreme character. 

In Fig. 3 shows the curves of ε(χ) for being studied bearing.
It is seen that they have the same character. The calculations showed that, regardless of 

displacement of mobile elements minimum eccentricity is provided at approximately the same value 
of the parameter χopt. 

So for the graphs presented in Fig. 4, the smallest value of the eccentricity and compliance occurs 
at χ = 0.52. The only parameter that significantly affects the optimal value of χ, is a clearance Ht0. Thus, 
when Ht0 = 1.5 optimal χopt = 0.24, at Ht0 = 1.25 χopt = 0.42, at Ht0 = 0.8 χopt = 0.68.

Attention is drawn to the fact that an increase in Km significantly expands the range of perceived 
bearing loads (Fig. 3). In Fig. 5 shows the curves that show the relationship with the capacity of the 
membranes Km percentage T of increase the maximum load capacity W under maximum load ordinary 
bearing (Km = 0).

From the Fig. 5 graphs show that the dependences T(Km) are extreme, i. e. for a fixed set of 
parameters it can specify a quite definite value of Km, in which the bearing will have the widest range 
of carrying loads. 
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Fig. 3. Comparative dependences ε(W) for a smooth (2-D) and profiled (1-D) bearings  

for various values of membrane compliance Km, χ = 0.52, L = 1.5, L1= 0.3, Rm= 1.2, Ht0= 1.  
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Fig. 3. Comparative dependences ε(W) for a smooth (2-D) and profiled (1-D) bearings for various values of mem-
brane compliance Km, χ = 0.52, L = 1.5, L1= 0.3, Rm= 1.2, Ht0= 1
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Fig. 4. Dependences ε (χ) for different values of the eccentricity εm of rings  

L = 1.5, L1 = 0.3, Rm = 1.2, Ht0 = 1, Km = 12. 
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Fig. 4. Dependences ε (χ) for different values of the eccentricity εm of rings L = 1.5, L1 = 0.3, Rm = 1.2, Ht0 = 1, 
Km = 12
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Fig. 5. Dependences T(Km) for different length L1 of the rings, 

L = 1.5, Rm = 1.2, Ht0 = 1. 
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Fig. 5. Dependences T(Km) for different length L1 of the rings, L = 1.5, Rm = 1.2, Ht0 = 1



Vladimir A. Kodnyanko. Static Characteristics of Active Hydrostatic Two-Row Radial Bearing with Restriction...

Decreasing width L1 of rings increases the maximum value of this relationship. Thus, when L1 = 
0.4 the best result occurs when Km = 7, for L1 = 0.3 Km = 9, at L1 = 0.2 Km = 14, with L1 = 0.1 Km = 25. 
For Fig. 5 data range of load capacity will be 28 – 43%. The increase of relative bearing length also 
enhances load range. So, when L = 2 T = 48%, with L = 3 T = 52%, with L ≥ 4 T = 55%.

Conclusion

This study results allow us to conclude that the correct calculation of static characteristics of 
hydrostatic radial bearings with smooth cylindrical surfaces and output flow rate restrictors over the 
entire range of operating loads can be carried out on the basis of two-dimensional model of lubricant flow 
only. However, for small eccentricities characteristics of bearing with zero or negative susceptibility 
can be calculated with sufficient accuracy by the simplified method, based on one-dimensional motion 
of lubricant flow [4]. Bearings with zero and negative compliances have capacity that is 20 – 50% more 
than conventional bearings of the same overall dimensions. The hydraulic resistance setting of input 
throttling slits decisive influence on the optimal static characteristics of the bearing. In this case the 
optimal values of resistance for conventional and active bearings are practically identical. 

Final conclusion on the performance of bearings can be obtained on the basis of dynamic quality 
study and experimental investigation of its performance indicators.
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Статические характеристики активного  
гидростатического двухрядного  
радиального подшипника  
с ограничением выходного потока смазки

В.А. Коднянко 
Сибирский федеральный университет,  

Россия 660041, Красноярск, пр. Свободный, 79

Рассмотрена конструкция активного гидростатического радиального подшипника с гладкими 
цилиндрическими рабочими поверхностями и ограничителями выходного смазочного потока 
смазки в виде подвижных колец с мембранным подвесом. Устройство в несколько раз менее 
энергоемко по сравнению c известными устройствами с регуляторами расхода. Подшипник 
обладает отрицательной и нулевой податливостью (бесконечной жесткостью), поэтому 
может быть использован в металлорежущих станках для подавления негативного влияния 
деформации упругой системы на точность обработки.   
На основе двухмерной модели смазочного потока разработана математическая модель, 
метод и методика расчета несущей способности и расхода смазки подшипника. Установлено, 
что расчет статических характеристик подшипника во всем диапазоне действующих 
нагрузок может быть корректно выполнен только на основе двухмерной модели. При малых 
эксцентриситетах характеристики нулевой и отрицательной податливости могут быть 
с удовлетворительной точностью рассчитаны по упрощенной методике, базирующейся 
на одномерном движении смазочного потока. Подшипники нулевой и отрицательной 
податливости обладают грузоподъемностью, которая на 20 – 50 % больше, чем у обычных 
подшипников тех же габаритных размеров. Настройка гидравлического сопротивления 
входной питающей щели решающим образом влияет на оптимальные статические 
характеристики подшипника. Оптимальные значения сопротивления щели для обычных и 
активных подшипников практически совпадают.

Ключевые слова: энергосберегающая, гидростатическая опора, гидростатический подшипник, 
нулевая податливость, бесконечная жесткость, отрицательная податливость, гладкие 
цилиндрические поверхности.


