15 research outputs found

    Аппроксимация ресурсных эквивалентностей в сетях Петри с невидимыми переходами

    Get PDF
    Two resources (submarkings) are called similar if in any marking any one of them can be replaced by another one without affecting the observable behavior of the net (regarding marking bisimulation). It is known that resource similarity is undecidable for general labelled Petri nets. In this paper we study the properties of the resource similarity and resource bisimulation (a subset of complete similarity relation closed under transition firing) in Petri nets with invisible transitions (where some transitions may be labelled with an invisible label (τ) that makes their firings unobservable for an external observer). It is shown that for a proper subclass (p-saturated nets) the resource bisimlation can be effectively checked. For a general class of Petri net with invisible transitions it is possible to construct a sequence of so-called (n, m)-equivalences approximating the largest τ-bisimulation of resources.Два ресурса (подразметки) называются подобными, если в любой разметке любой из них может быть заменен другим, и при этом наблюдаемое поведение сети не изменится (относительно бисимуляции разметок). Известно, что подобие ресурсов неразрешимо для обыкновенных сетей Петри. В этой статье мы изучаем свойства подобия ресурсов и бисимуляции ресурсов (подмножество отношения подобия, замкнутое по срабатыванию переходов) в сетях Петри с невидимыми переходами (где некоторые переходы могут быть помечены специальной меткой (τ), что делает их срабатывания невидимыми для внешнего наблюдателя). Показано, что для собственного подкласса (p-насыщенных сетей) бисимуляция ресурсов может быть эффективно проверена. Для общего класса сетей Петри с невидимыми переходами можно построить последовательность так называемых (n, m)-эквивалентностей, аппроксимирующую наибольшую τ-бисимиляцию ресурсов

    О пространственной ограниченности клеточных Р-сетей

    Get PDF
    Cellular resource driven automata nets (CRDA-nets) is a generalization of the concept of two-level resource nets (Petri nets) with an infinite regular system grid. This formalism is a hybrid of Petri nets and asynchronous Cellular Automata and is designed for modeling multi-agent systems with dynamic spatial structure. Spatial boundedness is a property that guarantees the preservation of the finiteness of “geometric dimensions” of the active part of the system (for example, the living space) during its lifetime. Three variants of spatial boundedness for cellular RDA-nets are defined: localization, bounded diameter and bounded area. The properties of the corresponding algorithmic problems are investigated, their undecidability in the general case is proved. A non-trivial criterion for the localization of an one-dimensional CRDA-net is proposed, based on the new concept of the RDA propagation graph. An algorithm is described for constructing a propagation graph, using the method of saturation of generating paths. A method for estimating the diameter of an 1-dim CRDA with a bounded propagation graph is presented.Клеточные Р-сети — обобщение концепции двухуровневых ресурсных сетей (сетей Петри) на случай бесконечной регулярной системной решетки. Этот формализм представляет собой гибрид сетей Петри и асинхронных клеточных автоматов и предназначен для моделирования мультиагентных систем с динамической пространственной структурой. Пространственная ограниченность — свойство, гарантирующее сохранение конечности “геометрических размеров” (например, площади) активной части системы на протяжении всей её жизни. Определяются три варианта пространственной ограниченности для клеточных Р-сетей: локализованность, ограниченность диаметра и ограниченность площади. Исследуются свойства соответствующих алгоритмических проблем, доказывается их неразрешимость в общем случае. Предлагается нетривиальный критерий локализованности одномерной клеточной сети, основанный на новой концепции графа распространения Р-автоматов. Описывается алгоритм построения графа распространения, использующий метод насыщения генерирующих путей. Предлагается способ оценки сверху диаметра одномерной клеточной сети с ограниченным графом распространения

    Применение нейронных сетей для распознавания конструктивных элементов рельсов на магнитных и вихретоковых дефектограммах

    Get PDF
    To ensure traffic safety of railway transport, non-destructive test of rails is regularly carried out by using various approaches and methods, including magnetic and eddy current flaw detection methods. An automatic analysis of large data sets (defectgrams) that come from the corresponding equipment is an actual problem. The analysis means a process of determining the presence of defective sections along with identifying structural elements of railway tracks on defectograms. This article is devoted to the problem of recognition of rail structural element images in magnetic and eddy current defectograms. Three classes of rail track structural elements are considered: 1) a bolted joint with straight or beveled connection of rails, 2) a butt weld of rails, and 3) an aluminothermic weld of rails. Images that cannot be assigned to these three classes are conditionally considered as defects and are placed in a separate fourth class. For image recognition of structural elements in defectograms a neural network is applied. The neural network is implemented by using the open library TensorFlow. To this purpose each selected (picked out) area of a defectogram is converted into a graphic image in a grayscale with size of 20 x 39 pixels.Для обеспечения безопасности движения на железнодорожном транспорте регулярно проводится неразрушающий контроль рельсов с применением различных подходов и методов, включая методы магнитной и вихретоковой дефектоскопии. Актуальной задачей является автоматический анализ больших массивов данных (дефектограмм), которые поступают от соответствующего оборудования. Под анализом понимается процесс определения по дефектограммам наличия дефектных участков наряду с выявлением конструктивных элементов рельсового пути. Данная статья посвящена задаче распознавания образов конструктивных элементов железнодорожных рельсов по дефектограммам многоканальных магнитных и вихретоковых дефектоскопов. Рассматриваются три класса конструктивных элементов рельсового пути: 1) болтовой стык с прямым или скошенным соединением рельсов, 2) электроконтактная сварка рельсов и 3) алюмотермитная сварка рельсов. Образы, которые не могут быть отнесены к этим трем классам, условно считаются дефектами и выносятся в отдельный четвертый класс. Для распознавания образов конструктивных элементов на дефектограммах применяется нейронная сеть, реализованная в рамках открытой библиотеки TensorFlow. С этой целью каждая выделенная для анализа область дефектограммы преобразуется в графический образ в градации серого цвета размером 20 на 39 пикселей

    Применение свёрточных нейронных сетей для распознавания длинных конструктивных элементов рельсов на вихретоковых дефектограммах

    Get PDF
    To ensure traffic safety of railway transport, non-destructive test of rails is regularly carried out by using various approaches and methods, including eddy-current flaw detection methods. An automatic analysis of large data sets (defectograms) that come from the corresponding equipment is an actual problem. The analysis means a process of determining the presence of defective sections along with identifying structural elements of railway tracks in defectograms. This article is devoted to the problem of recognizing images of long structural elements of rails in eddy-current defectograms. Two classes of rail track structural elements are considered: 1) rolling stock axle counters, 2) rail crossings. Long marks that cannot be assigned to these two classes are conditionally considered as defects and are placed in a separate third class. For image recognition of structural elements in defectograms a convolutional neural network is applied. The neural network is implemented by using the open library TensorFlow. To this purpose each selected (picked out) area of a defectogram is converted into a graphic image in a grayscale with size of 30 x 140 points.Для обеспечения безопасности движения на железнодорожном транспорте регулярно проводится неразрушающий контроль рельсов с применением различных подходов и методов, включая методы вихретоковой дефектоскопии. Актуальной задачей является автоматический анализ больших массивов данных (дефектограмм), которые поступают от соответствующего оборудования. Под анализом понимается процесс определения по дефектограммам наличия дефектных участков наряду с выявлением конструктивных элементов рельсового пути. Данная статья посвящена задаче распознавания образов длинных конструктивных элементов железнодорожных рельсов по дефектограммам многоканальных вихретоковых дефектоскопов. Рассматриваются два класса конструктивных элементов рельсового пути: 1) счётчики осей подвижного состава, 2) пересечения рельсовых путей. Длинные отметки, которые не могут быть отнесены к этим двум классам, условно считаются дефектами и выносятся в отдельный третий класс. Для распознавания образов конструктивных элементов на дефектограммах применяется свёрточная нейронная сеть, реализованная в рамках открытой библиотеки TensorFlow. С этой целью каждая выделенная для анализа область дефектограммы преобразуется в графический образ в градации серого цвета размером 30 на 140 точек

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    On the Approximation of the Resource Equivalences in Petri Nets with the Invisible Transitions

    Get PDF
    Two resources (submarkings) are called similar if in any marking any one of them can be replaced by another one without affecting the observable behavior of the net (regarding marking bisimulation). It is known that resource similarity is undecidable for general labelled Petri nets. In this paper we study the properties of the resource similarity and resource bisimulation (a subset of complete similarity relation closed under transition firing) in Petri nets with invisible transitions (where some transitions may be labelled with an invisible label (τ) that makes their firings unobservable for an external observer). It is shown that for a proper subclass (p-saturated nets) the resource bisimlation can be effectively checked. For a general class of Petri net with invisible transitions it is possible to construct a sequence of so-called (n, m)-equivalences approximating the largest τ-bisimulation of resources

    Application of Convolutional Neural Networks for Recognizing Long Structural Elements of Rails in Eddy-Current Defectograms

    Get PDF
    To ensure traffic safety of railway transport, non-destructive test of rails is regularly carried out by using various approaches and methods, including eddy-current flaw detection methods. An automatic analysis of large data sets (defectograms) that come from the corresponding equipment is an actual problem. The analysis means a process of determining the presence of defective sections along with identifying structural elements of railway tracks in defectograms. This article is devoted to the problem of recognizing images of long structural elements of rails in eddy-current defectograms. Two classes of rail track structural elements are considered: 1) rolling stock axle counters, 2) rail crossings. Long marks that cannot be assigned to these two classes are conditionally considered as defects and are placed in a separate third class. For image recognition of structural elements in defectograms a convolutional neural network is applied. The neural network is implemented by using the open library TensorFlow. To this purpose each selected (picked out) area of a defectogram is converted into a graphic image in a grayscale with size of 30 x 140 points
    corecore