25 research outputs found

    A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission

    Get PDF
    This global study, which has been coordinated by the World Meteorological Organization Global Atmospheric Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the differences in both emissions and regional and local meteorology in 2020 compared with the period 2015–2019. By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air quality in and around cities across the globe for the following air pollutants PM2.5, PM10, PMC (coarse fraction of PM), NO2, SO2, NOx, CO, O3 and the total gaseous oxidant (OX = NO2 + O3) during the pre-lockdown, partial lockdown, full lockdown and two relaxation periods spanning from January to September 2020. The analysis is based on in situ ground-based air quality observations at over 540 traffic, background and rural stations, from 63 cities and covering 25 countries over seven geographical regions of the world. Anomalies in the air pollutant concentrations (increases or decreases during 2020 periods compared to equivalent 2015–2019 periods) were calculated and the possible effects of meteorological conditions were analysed by computing anomalies from ERA5 reanalyses and local observations for these periods. We observed a positive correlation between the reductions in NO2 and NOx concentrations and peoples’ mobility for most cities. A correlation between PMC and mobility changes was also seen for some Asian and South American cities. A clear signal was not observed for other pollutants, suggesting that sources besides vehicular emissions also substantially contributed to the change in air quality. As a global and regional overview of the changes in ambient concentrations of key air quality species, we observed decreases of up to about 70% in mean NO2 and between 30% and 40% in mean PM2.5 concentrations over 2020 full lockdown compared to the same period in 2015–2019. However, PM2.5 exhibited complex signals, even within the same region, with increases in some Spanish cities, attributed mainly to the long-range transport of African dust and/or biomass burning (corroborated with the analysis of NO2/CO ratio). Some Chinese cities showed similar increases in PM2.5 during the lockdown periods, but in this case, it was likely due to secondary PM formation. Changes in O3 concentrations were highly heterogeneous, with no overall change or small increases (as in the case of Europe), and positive anomalies of 25% and 30% in East Asia and South America, respectively, with Colombia showing the largest positive anomaly of ~70%. The SO2 anomalies were negative for 2020 compared to 2015–2019 (between ~25 to 60%) for all regions. For CO, negative anomalies were observed for all regions with the largest decrease for South America of up to ~40%. The NO2/CO ratio indicated that specific sites (such as those in Spanish cities) were affected by biomass burning plumes, which outweighed the NO2 decrease due to the general reduction in mobility (ratio of ~60%). Analysis of the total oxidant (OX = NO2 + O3) showed that primary NO2 emissions at urban locations were greater than the O3 production, whereas at background sites, OX was mostly driven by the regional contributions rather than local NO2 and O3 concentrations. The present study clearly highlights the importance of meteorology and episodic contributions (e.g., from dust, domestic, agricultural biomass burning and crop fertilizing) when analysing air quality in and around cities even during large emissions reductions. There is still the need to better understand how the chemical responses of secondary pollutants to emission change under complex meteorological conditions, along with climate change and socio-economic drivers may affect future air quality. The implications for regional and global policies are also significant, as our study clearly indicates that PM2.5 concentrations would not likely meet the World Health Organization guidelines in many parts of the world, despite the drastic reductions in mobility. Consequently, revisions of air quality regulation (e.g., the Gothenburg Protocol) with more ambitious targets that are specific to the different regions of the world may well be required.Peer reviewedFinal Published versio

    A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions

    Get PDF
    This global study, which has been coordinated by the World Meteorological Organization Global Atmospheric Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the differences in both emissions and regional and local meteorology in 2020 compared with the period 2015–2019. By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air quality in and around cities across the globe for the following air pollutants PM2.5, PM10, PMC (coarse fraction of PM), NO2, SO2, NOx, CO, O3 and the total gaseous oxidant (OX = NO2 + O3) during the pre-lockdown, partial lockdown, full lockdown and two relaxation periods spanning from January to September 2020. The analysis is based on in situ ground-based air quality observations at over 540 traffic, background and rural stations, from 63 cities and covering 25 countries over seven geographical regions of the world. Anomalies in the air pollutant concentrations (increases or decreases during 2020 periods compared to equivalent 2015–2019 periods) were calculated and the possible effects of meteorological conditions were analysed by computing anomalies from ERA5 reanalyses and local observations for these periods. We observed a positive correlation between the reductions in NO2 and NOx concentrations and peoples’ mobility for most cities. A correlation between PMC and mobility changes was also seen for some Asian and South American cities. A clear signal was not observed for other pollutants, suggesting that sources besides vehicular emissions also substantially contributed to the change in air quality. As a global and regional overview of the changes in ambient concentrations of key air quality species, we observed decreases of up to about 70% in mean NO2 and between 30% and 40% in mean PM2.5 concentrations over 2020 full lockdown compared to the same period in 2015–2019. However, PM2.5 exhibited complex signals, even within the same region, with increases in some Spanish cities, attributed mainly to the long-range transport of African dust and/or biomass burning (corroborated with the analysis of NO2/CO ratio). Some Chinese cities showed similar increases in PM2.5 during the lockdown periods, but in this case, it was likely due to secondary PM formation. Changes in O3 concentrations were highly heterogeneous, with no overall change or small increases (as in the case of Europe), and positive anomalies of 25% and 30% in East Asia and South America, respectively, with Colombia showing the largest positive anomaly of ~70%. The SO2 anomalies were negative for 2020 compared to 2015–2019 (between ~25 to 60%) for all regions. For CO, negative anomalies were observed for all regions with the largest decrease for South America of up to ~40%. The NO2/CO ratio indicated that specific sites (such as those in Spanish cities) were affected by biomass burning plumes, which outweighed the NO2 decrease due to the general reduction in mobility (ratio of ~60%). Analysis of the total oxidant (OX = NO2 + O3) showed that primary NO2 emissions at urban locations were greater than the O3 production, whereas at background sites, OX was mostly driven by the regional contributions rather than local NO2 and O3 concentrations. The present study clearly highlights the importance of meteorology and episodic contributions (e.g., from dust, domestic, agricultural biomass burning and crop fertilizing) when analysing air quality in and around cities even during large emissions reductions. There is still the need to better understand how the chemical responses of secondary pollutants to emission change under complex meteorological conditions, along with climate change and socio-economic drivers may affect future air quality. The implications for regional and global policies are also significant, as our study clearly indicates that PM2.5 concentrations would not likely meet the World Health Organization guidelines in many parts of the world, despite the drastic reductions in mobility. Consequently, revisions of air quality regulation (e.g., the Gothenburg Protocol) with more ambitious targets that are specific to the different regions of the world may well be required.World Meteorological Organization Global Atmospheric Watch programme is gratefully acknowledged for initiating and coordinating this study and for supporting this publication. We acknowledge the following projects for supporting the analysis contained in this article: Air Pollution and Human Health for an Indian Megacity project PROMOTE funded by UK NERC and the Indian MOES, Grant reference number NE/P016391/1; Regarding project funding from the European Commission, the sole responsibility of this publication lies with the authors. The European Commission is not responsible for any use that may be made of the information contained therein. This project has received funding from the European Commission’s Horizon 2020 research and innovation program under grant agreement No 874990 (EMERGE project). European Regional Development Fund (project MOBTT42) under the Mobilitas Pluss programme; Estonian Research Council (project PRG714); Estonian Research Infrastructures Roadmap project Estonian Environmental Observatory (KKOBS, project 2014-2020.4.01.20-0281). European network for observing our changing planet project (ERAPLANET, grant agreement no. 689443) under the European Union’s Horizon 2020 research and innovation program, Estonian Ministry of Sciences projects (grant nos. P180021, P180274), and the Estonian Research Infrastructures Roadmap project Estonian Environmental Observatory (3.2.0304.11-0395). Eastern Mediterranean and Middle East—Climate and Atmosphere Research (EMME-CARE) project, which has received funding from the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement no. 856612) and the Government of Cyprus. INAR acknowledges support by the Russian government (grant number 14.W03.31.0002), the Ministry of Science and Higher Education of the Russian Federation (agreement 14.W0331.0006), and the Russian Ministry of Education and Science (14.W03.31.0008). We are grateful to to the following agencies for providing access to data used in our analysis: A.M. Obukhov Institute of Atmospheric Physics Russian Academy of Sciences; Agenzia Regionale per la Protezione dell’Ambiente della Campania (ARPAC); Air Quality and Climate Change, Parks and Environment (MetroVancouver, Government of British Columbia); Air Quality Monitoring & Reporting, Nova Scotia Environment (Government of Nova Scotia); Air Quality Monitoring Network (SIMAT) and Emission Inventory, Mexico City Environment Secretariat (SEDEMA); Airparif (owner & provider of the Paris air pollution data); ARPA Lazio, Italy; ARPA Lombardia, Italy; Association Agr´e´ee de Surveillance de la Qualit´e de l’Air en ˆIle-de- France AIRPARIF / Atmo-France; Bavarian Environment Agency, Germany; Berlin Senatsverwaltung für Umwelt, Verkehr und Klimaschutz, Germany; California Air Resources Board; Central Pollution Control Board (CPCB), India; CETESB: Companhia Ambiental do Estado de S˜ao Paulo, Brazil. China National Environmental Monitoring Centre; Chandigarh Pollution Control Committee (CPCC), India. DCMR Rijnmond Environmental Service, the Netherlands. Department of Labour Inspection, Cyprus; Department of Natural Resources Management and Environmental Protection of Moscow. Environment and Climate Change Canada; Environmental Monitoring and Science Division Alberta Environment and Parks (Government of Alberta); Environmental Protection Authority Victoria (Melbourne, Victoria, Australia); Estonian Environmental Research Centre (EERC); Estonian University of Life Sciences, SMEAR Estonia; European Regional Development Fund (project MOBTT42) under the Mobilitas Pluss programme; Finnish Meteorological Institute; Helsinki Region Environmental Services Authority; Haryana Pollution Control Board (HSPCB), IndiaLondon Air Quality Network (LAQN) and the Automatic Urban and Rural Network (AURN) supported by the Department of Environment, Food and Rural Affairs, UK Government; Madrid Municipality; Met Office Integrated Data Archive System (MIDAS); Meteorological Service of Canada; Minist`ere de l’Environnement et de la Lutte contre les changements climatiques (Gouvernement du Qu´ebec); Ministry of Environment and Energy, Greece; Ministry of the Environment (Chile) and National Weather Service (DMC); Moscow State Budgetary Environmental Institution MOSECOMONITORING. Municipal Department of the Environment SMAC, Brazil; Municipality of Madrid public open data service; National institute of environmental research, Korea; National Meteorology and Hydrology Service (SENAMHI), Peru; New York State Department of Environmental Conservation; NSW Department of Planning, Industry and Environment; Ontario Ministry of the Environment, Conservation and Parks, Canada; Public Health Service of Amsterdam (GGD), the Netherlands. Punjab Pollution Control Board (PPCB), India. R´eseau de surveillance de la qualit´e de l’air (RSQA) (Montr´eal); Rosgydromet. Mosecomonitoring, Institute of Atmospheric Physics, Russia; Russian Foundation for Basic Research (project 20–05–00254) SAFAR-IITM-MoES, India; S˜ao Paulo State Environmental Protection Agency, CETESB; Secretaria de Ambiente, DMQ, Ecuador; Secretaría Distrital de Ambiente, Bogot´a, Colombia. Secretaria Municipal de Meio Ambiente Rio de Janeiro; Mexico City Atmospheric Monitoring System (SIMAT); Mexico City Secretariat of Environment, Secretaría del Medio Ambiente (SEDEMA); SLB-analys, Sweden; SMEAR Estonia station and Estonian University of Life Sciences (EULS); SMEAR stations data and Finnish Center of Excellence; South African Weather Service and Department of Environment, Forestry and Fisheries through SAAQIS; Spanish Ministry for the Ecological Transition and the Demographic Challenge (MITECO); University of Helsinki, Finland; University of Tartu, Tahkuse air monitoring station; Weather Station of the Institute of Astronomy, Geophysics and Atmospheric Science of the University of S˜ao Paulo; West Bengal Pollution Control Board (WBPCB).http://www.elsevier.com/locate/envintam2023Geography, Geoinformatics and Meteorolog

    Closing the Loop Between Energy Production and Waste Management: A Conceptual Approach Towards Sustainable Development

    No full text
    Interactions between technological solutions for managing waste and energy supply chains are multilateral and can vary significantly, depending on multiple criteria and different characteristics. This concept paper puts forward a conceptual framework for sustainable development based on the notion of “intelligence” for Waste-to-Energy (WtE) strategies. The pillars of intelligence are defined and the quadruple helix model for energy transitions based on waste management is established. The “smart” nodes of a WtE supply chain management are analytically presented and discussed. Nevertheless, the intelligent notion for a supply chain cannot stand on its own. Systematical support of a participatory process is needed via Information and Communication Technology (ICT) tools and e-techniques to be promoted for collective facilitation and sustainable management. This process encompasses intelligent residents and professionals as producers of waste and smart managers to supervise the supply chain towards sustainable management of energy and waste resources. It is argued that the ICT participatory interface has a multiplying effect, especially when adopting the middle pathway approach in local and/or decentralized level towards smart energy production from waste. Innovative solutions to maximize waste efficiency through the collaborative power of ICT networks is critical to be deployed within local communities. These can be based on internet of things, big data, operational modeling, complex systems science, games and narratives, and social networks. The conceptual framework presented herein provides a basis for decision support towards sustainable development and interaction through a creative pathway of collaboration applicable to all the levels of potential synergies. Main conclusions and future challenges indicate that more research effort is required by the scientific community to leverage on the collaborative power of social networks and to efficiently apply ICT methods for adopting the “socially-oriented” middle pathway approach within communities’ empowerment. Only on this basis may the tale of two challenges have a happy end, both for energy transition and waste management

    Smart buildings need smart consumers: the meet-in-the middle approach towards sustainable management of energy sources

    No full text
    Sustainable management of energy resources is a challenge which our society faces at economic, environmental and political levels. Smart homes are central in recent technology; however, the smart buildings concept cannot stand on its own. Smart buildings need ‘smart consumers’, i.e. citizens who interact towards intelligent use of energy. Creating tools to enable citizens to become ‘smart consumers’ is one crucial factor for energy efficiency and rationalisation of energy and should be combined with promoting smart home initiatives. The paper presents a social-oriented ‘meet-in-the-middle’ scheme towards smart energy consumption in buildings and a roadmap to efficiently create tools for ‘smart consumers’. The wider penetration of ICT tools will facilitate opportunities for citizens’ empowerment to collaborate and promote better informed decision-making

    Combining a Multi-Objective Approach and Multi-Criteria Decision Analysis to Include the Socio-Economic Dimension in an Air Quality Management Problem

    Get PDF
    Due to some harmful effects on humans and the environment, particulate matter (PM) has recently become among the most studied atmospheric pollutants. Given the growing sensitivity to the problem and, since production and accumulation phenomena involving both primary and secondary PM10 fractions are complex and non-linear, environmental authorities need tools to assess their plans designed to improve the air quality as requested from environmental laws. Multi-criteria decision analysis (MCDA) can be applied to support decision makers, by processing quantitative opinions provided by pools of experts, especially when different views on social aspects should be considered. The results obtained through this approach, however, can be highly dependent on the subjectivity of experts. To partially overcome these challenges, this paper suggests a two-step methodology in which an MCDA is fed with the solution of a multi-objective analysis (MOA). The methodology has been applied to a test case in northern Italy and the results show that this approach is a viable solution for the inclusion of subjective criteria in decision making, while reducing the impact of uncertain expert opinions for data that can be computed through the MOA

    OpΕnergy: An Intelligent System for Monitoring EU Energy Strategy Using EU Open Data

    No full text
    In this paper, the basic structure of an ICT platform of energy indicators, Openergy, is analytically presented, leveraging energy open data to help address the energy crisis more democratically. More specifically, its applicability as a dynamic tool for the management of climate, environmental, and socioeconomic information is described, and its efficiency in helping uncover insights for optimal data-driven decisions is depicted. Openergy uses data from the official portal for European data and the Eurostat site. Its database consists of data related to six energy categories, EU 2020 energy targets, energy balance, electricity production, transport fuels, heat production, and gas emissions, and each one includes its own indicators for EU countries. The platform includes visualizations of these data as well as time series modeling and forecasting, and the results are depicted at Openergy platform. The time series modeling provides forecasts with confidence intervals of each indicator until 2020 in each energy category. Empirical validation, RMSE, and MAE values showed that in almost all cases and estimations, the predicted values are in very good agreement with the observed values

    Decision Support System to Implement Units of Alternative Biowaste Treatment for Producing Bioenergy and Boosting Local Bioeconomy

    No full text
    Lately, the model of circular economy has gained worldwide interest. Within its concept, waste is viewed as a beneficial resource that needs to be re-introduced in the supply chains, which also requires the use of raw materials, energy, and water to be minimized. Undeniably, a strong link exists between the bioeconomy, circular economy, bioproducts, and bioenergy. In this light, in order to promote a circular economy, a range of alternative options and technologies for biowaste exploitation are currently available. In this paper, we propose a generic methodological scheme for the development of small, medium, or large-scale units of alternative biowaste treatment, with an emphasis on the production of bioenergy and other bioproducts. With the use of multi-criteria decision analysis, the model simultaneously considers environmental, economic, and social criteria to support robust decision-making. In order to validate the methodology, the latter was demonstrated in a real-world case study for the development of a facility in the region of Serres, Greece. Based on the proposed methodological scheme, the optimal location of the facility was selected, based on its excellent assessment in criteria related to environmental performance, financial considerations, and local acceptance. Moreover, anaerobic digestion of agricultural residues, together with farming and livestock wastes, was recommended in order to produce bioenergy and bioproducts

    Involving decision-makers in the transformation of results into urban sustainability policies

    No full text
    Mind mapping tools are used to stimulate thinking about sustainability and define its significance for urban planning. Such tools are based on keywords that are identified and structured through dialogue-based procedures. The approach can be used also for switching between highlighting sectorial aspects, such as territorial management and urban design, social and economic cohesion and cross-sectorial aspects, such as sustainable mobility and energy efficiency. This paper emphasizes a structured dialogue with desicion-makers at national, regional and local levels, aimed at identifying what decision-makers really need to decide and the key barriers to the implementation of existing urban sustainability tools. This study was organized in four discrete steps. Initially, what EU urban sustainability projects can deliver (studies, methodologies, tools, policies, etc.) was identified. The deliverables were evaluated against certain criteria and categorized into cross-cutting aspects (territorial management and urban design, social and economic cohesion) and sectorial aspects (sustainable mobility, energy efficiency). The structured dialogue was implemented in parallel with the evaluation of the deliverables in order to match them with decision-makers’ needs, priorities and expectations. The ultimate goal was to develop and make available an operational Decision Support System (DSS) for public Authorities and urban planners, which combines their needs, priorities and expectations (structured dialogue results) with existing deliverables, developed within the framework of EU projects that up to now have had a low transferability and applicability rate

    Preservation of the Mediterranean Identity: An Intra-City Analysis Towards a Macro-Regional Approach for the Characterisation of Urban Sustainability

    No full text
    Globalisation combined with high urbanisation trends affects not only the traditional pillars of sustainability (environment, society, and economy), but also local identity. Customs and traditions are fading away and alienation is the result of new lifestyles deriving mainly from high interaction between locals and foreigners (focus on tourism). Facing the challenge of characterising urban sustainability, reflection on special characteristics of the urban fabric that are affected (spatial dimension of sustainability) is not always considered. Even though a lot of research is dedicated to the characterisation of urban areas’ sustainability, the element of local, regional, and macro-regional identity seems not to be systematically incorporated. This work attempts to develop and test a methodological framework to identify and prioritise the common symbolic elements that constitute the identity of a group of cities and that need to be sustained. The study focuses on the Euro-Mediterranean region. A survey is addressed to 64 scientists from five cities: Dubrovnik, Genoa, Rhodes, Valencia, and Venice. “Urban structure” is revealed as the most important element that constitutes the “Mediterranean identity”. Moreover, the level of threat deriving from mass tourism on the “Mediterranean identity” is estimated. The survey provides insight into the definition of the spatial dimension of sustainability and the determination/weighting of the case-specific component of an integrated urban sustainability assessment tool

    Assessing the landscape ecological risk of road construction: The case of the Phnom Penh-Sihanoukville Expressway in Cambodia

    No full text
    Extensive development of expressway infrastructure alters the layout of terrain resulting and results in major ecological concerns. Therefore, it has become necessary to investigate how to assess the effects of land use changes on the landscape pattern and explore pertinent environmental concerns related to road construction. This study develops a numerical mothed to assess the ecological risk of road construction in terms of landscape pattern by combining the landscape disturbance index and the vulnerability index. The model is used to assess the landscape ecological risk of a particular portion of the Phnom Penh-Sihanoukville Expressway in Cambodia. The empirical study found that the rise in the amount of construction land was transferred from the area of grassland to cultivated land. It is identified through calculating the landscape pattern index that the integrity of the landscape decreases due to the expressway construction; ecological landscape tends to be complicated and fragmented; and the gravity center of the land use landscape pattern transitions in the same direction as the expressway construction. The ecological risk was assessed and it was found that the expressway construction led to a transition to poorer ecological quality along the road as a whole, and that areas of high ecological risk and higher ecological risk were gradually concentrated from the two ends to the central area. The study develops the landscape ecological risk assessment model and extends the landscape ecological risk assessment index to the ecological assessment of expressway construction. It can also effectively guide the ecological risk assessment of major international road projects
    corecore