20 research outputs found

    Movement Disorders in Glucose Transporter Type 1 Deficiency

    No full text
    Movement disorders constitute an important and distinctive clinical consequence of glucose transporter type 1 deficiency. Gait disturbances and dyskinesias can be present chronically, and can fluctuate daily with fasting, exercise, and other environmental triggers. Patients manifest an array of paroxysmal disorders often associated with variable motor symptoms, also precipitated by fasting, exercise, and other stressors. Ketogenic diet is the treatment of choice in this condition and can offer substantial improvement of motor symptoms, particularly if instituted immediately after the onset of first clinical symptoms. Copyright © 2015 by Georg Thieme Verlag KG, Stuttgart, New York

    Congenital lacticacidemia caused by lipoamide dehydrogenase deficiency with favorable outcome

    Get PDF
    Contains fulltext : 21768___.PDF (publisher's version ) (Open Access

    The spectrum of movement disorders in Glut-1 deficiency

    No full text
    To assess the spectrum of movement disorders, we reviewed video recordings and charts of 57 patients with Glut-1 deficiency. Eighty-nine percent of patients with Glut-1 deficiency syndrome had a disturbance of gait. The most frequent gait abnormalities were ataxic-spastic and ataxic. Action limb dystonia was observed in 86% of cases and mild chorea in 75%. Cerebellar action tremor was seen in 70% of patients, myoclonus in 16%, and dyspraxia in 21%. Nonepileptic paroxysmal events occurred in 28% of patients, and included episodes of ataxia, weakness, Parkinsonism and nonkinesogenic dyskinesias. The 40 patients (70%) who were on the ketogenic diet had less severe gait disturbances but more dystonia, chorea, tremor, myoclonus, dyspraxia, and paroxysmal events compared with the 17 patients on a conventional diet. Poor dietary compliance and low ketonuria appear to trigger the paroxysmal events in some patients. Gait disturbances and movement disorders are frequent in patients with Glut-1 deficiency and are signs of chronic and intermittent pyramidal, cerebellar and extrapyramidal circuit dysfunction. These clinical symptoms reflect chronic nutrient deficiency during brain development and may be mitigated by chronic ketosis. © 2010 Movement Disorder Society

    Paroxysmal eye-head movements in Glut1 deficiency syndrome

    No full text
    Objective: To describe a characteristic paroxysmal eye-head movement disorder that occurs in infants with Glut1 deficiency syndrome (Glut1 DS). Methods: We retrospectively reviewed the medical charts of 101 patients with Glut1 DS to obtain clinical data about episodic abnormal eye movements and analyzed video recordings of 18 eye movement episodes from 10 patients. Results: A documented history of paroxysmal abnormal eye movements was found in 32/101 patients (32%), and a detailed description was available in 18 patients, presented here. Episodes started before age 6 months in 15/18 patients (83%), and preceded the onset of seiz ures in10/16 patients (63%) who experienced both types of episodes. Eye movement episodes resolved, with or without treatment, by 6 years of age in 7/8 patients with documented longtermcourse. Episodes were brief (usually ,5 minutes). Video analysis revealed that the eye movements were rapid, multidirectional, and often accompanied by a head movement in the same direction. Eye movements were separated by clear intervals of fixation, usually ranging from 200to 800 ms. The movements were consistent with eye-head gaze saccades. These movements can be distinguished from opsoclonus by the presence of a clear intermovement fixation interval and the association of a same-direction head movement. Conclusions: Paroxysmal eye-head movements, for which we suggest the term aberrant gaze saccades, are an early symptom of Glut1 DS in infancy. Recognition of the episodes will facilitate prompt diagnosis of this treatable neurodevelopmental disorder. © 2017 American Academy of Neurology

    Glut1 Deficiency Syndrome (Glut1DS): State of the art in 2020 and recommendations of the international Glut1DS study group

    No full text
    Glut1 deficiency syndrome (Glut1DS) is a brain energy failure syndrome caused by impaired glucose transport across brain tissue barriers. Glucose diffusion across tissue barriers is facilitated by a family of proteins including glucose transporter type 1 (Glut1). Patients are treated effectively with ketogenic diet therapies (KDT) that provide a supplemental fuel, namely ketone bodies, for brain energy metabolism. The increasing complexity of Glut1DS, since its original description in 1991, now demands an international consensus statement regarding diagnosis and treatment. International experts (n = 23) developed a consensus statement utilizing their collective professional experience, responses to a standardized questionnaire, and serial discussions of wide-ranging issues related to Glut1DS. Key clinical features signaling the onset of Glut1DS are eye-head movement abnormalities, seizures, neurodevelopmental impairment, deceleration of head growth, and movement disorders. Diagnosis is confirmed by the presence of these clinical signs, hypoglycorrhachia documented by lumbar puncture, and genetic analysis showing pathogenic SLC2A1 variants. KDT represent standard choices with Glut1DS-specific recommendations regarding duration, composition, and management. Ongoing research has identified future interventions to restore Glut1 protein content and function. Clinical manifestations are influenced by patient age, genetic complexity, and novel therapeutic interventions. All clinical phenotypes will benefit from a better understanding of Glut1DS natural history throughout the life cycle and from improved guidelines facilitating early diagnosis and prompt treatment. Often, the presenting seizures are treated initially with antiseizure drugs before the cause of the epilepsy is ascertained and appropriate KDT are initiated. Initial drug treatment fails to treat the underlying metabolic disturbance during early brain development, contributing to the long-term disease burden. Impaired development of the brain microvasculature is one such complication of delayed Glut1DS treatment in the postnatal period. This international consensus statement should facilitate prompt diagnosis and guide best standard of care for Glut1DS throughout the life cycle. © 2020 The Authors. Epilepsia Open published by Wiley Periodicals LLC on behalf of International League Against Epilepsy

    Glut1 Deficiency Syndrome (Glut1DS ) : State of the art in 2020 and recommendations of the international Glut1DS study group

    Get PDF
    Glut1 deficiency syndrome (Glut1DS) is a brain energy failure syndrome caused by impaired glucose transport across brain tissue barriers. Glucose diffusion across tissue barriers is facilitated by a family of proteins including glucose transporter type 1 (Glut1). Patients are treated effectively with ketogenic diet therapies (KDT) that provide a supplemental fuel, namely ketone bodies, for brain energy metabolism. The increasing complexity of Glut1DS, since its original description in 1991, now demands an international consensus statement regarding diagnosis and treatment. International experts (n = 23) developed a consensus statement utilizing their collective professional experience, responses to a standardized questionnaire, and serial discussions of wide-ranging issues related to Glut1DS. Key clinical features signaling the onset of Glut1DS are eye-head movement abnormalities, seizures, neurodevelopmental impairment, deceleration of head growth, and movement disorders. Diagnosis is confirmed by the presence of these clinical signs, hypoglycorrhachia documented by lumbar puncture, and genetic analysis showing pathogenic SLC2A1 variants. KDT represent standard choices with Glut1DS-specific recommendations regarding duration, composition, and management. Ongoing research has identified future interventions to restore Glut1 protein content and function. Clinical manifestations are influenced by patient age, genetic complexity, and novel therapeutic interventions. All clinical phenotypes will benefit from a better understanding of Glut1DS natural history throughout the life cycle and from improved guidelines facilitating early diagnosis and prompt treatment. Often, the presenting seizures are treated initially with antiseizure drugs before the cause of the epilepsy is ascertained and appropriate KDT are initiated. Initial drug treatment fails to treat the underlying metabolic disturbance during early brain development, contributing to the long-term disease burden. Impaired development of the brain microvasculature is one such complication of delayed Glut1DS treatment in the postnatal period. This international consensus statement should facilitate prompt diagnosis and guide best standard of care for Glut1DS throughout the life cycle
    corecore