7 research outputs found

    Reassessing the Evolutionary Importance of Inflammasomes

    Get PDF
    Inflammasomes monitor the cytosol for microbial contamination or perturbation, and are thus predicted to provide potent defense against infection. However, the compendium of data from murine infection models suggests that inflammasomes merely delay the course of disease, allowing the host time to mount an adaptive response. Interpretations of such results are confounded by inflammasome evasion strategies of vertebrate-adapted pathogens. Conversely, environmental opportunistic pathogens have not evolved in the context of inflammasomes, and are therefore less likely to evade them. Indeed, opportunistic pathogens do not normally cause disease in wild type animals. Accordantly, the extreme virulence of two opportunistic bacterial pathogens, Burkholderia thailandensis and Chromobacterium violaceum, is fully counteracted by inflammasomes in murine models. This leads us to propose a new hypothesis: perhaps animals maintain inflammasomes over evolutionary time not to defend against vertebrate-adapted pathogens, but instead to counteract infection by a plethora of undiscovered opportunistic pathogens residing in the environment

    A Phenotype at Last: Essential Role for the Yersinia enterocolitica Ysa Type III Secretion System in a Drosophila melanogaster S2 Cell Model

    Get PDF
    ABSTRACT The highly pathogenic Yersinia enterocolitica strains have a chromosomally encoded type III secretion system (T3SS) that is expressed and functional in vitro only when the bacteria are cultured at 26°C. Mutations that render this system nonfunctional are slightly attenuated in the mouse model of infection only following an oral inoculation and only at early time points postinfection. The discrepancy between the temperature required for the Ysa gene expression and the physiological temperature required for mammalian model systems has made defining the role of this T3SS challenging. Therefore, we explored the use of Drosophila S2 cells as a model system for studying Ysa function. We show here that Y. enterocolitica is capable of infecting S2 cells and replicating intracellularly to high levels, an unusual feature of this pathogen. Importantly, we show that the Ysa T3SS is required for robust intracellular replication. A secretion-deficient mutant lacking the secretin gene, ysaC , is defective in replication within S2 cells, marking the first demonstration of a pronounced Ysa-dependent virulence phenotype. Establishment of S2 cells as a model for Y. enterocolitica infection provides a versatile tool to elucidate the role of the Ysa T3SS in the life cycle of this gastrointestinal pathogen

    Inflammasomes Coordinate Pyroptosis and Natural Killer Cell Cytotoxicity to Clear Infection by a Ubiquitous Environmental Bacterium

    Get PDF
    Defective neutrophils in patients with chronic granulomatous disease (CGD) cause susceptibility to extracellular and intracellular infections. Microbes must first be ejected from intracellular niches to expose them to neutrophil attack, so we hypothesized that inflammasomes detect certain CGD pathogens upstream of neutrophil killing. Here, we identified one such ubiquitous environmental bacterium, Chromobacterium violaceum, whose extreme virulence was fully counteracted by the NLRC4 inflammasome. Caspase-1 protected via two parallel pathways that eliminated intracellular replication niches. Pyroptosis was the primary bacterial clearance mechanism in the spleen, but both pyroptosis and interleukin-18 (IL-18)-driven natural killer (NK) cell responses were required for liver defense. NK cells cleared hepatocyte replication niches via perforin-dependent cytotoxicity, whereas interferon-Îł was not required. These insights suggested a therapeutic approach: exogenous IL-18 restored perforin-dependent cytotoxicity during infection by the inflammasome-evasive bacterium Listeria monocytogenes. Therefore, inflammasomes can trigger complementary programmed cell death mechanisms, directing sterilizing immunity against intracellular bacterial pathogens

    Reassessing the Evolutionary Importance of Inflammasomes

    No full text
    Inflammasomes monitor the cytosol for microbial contamination or perturbation, and are thus predicted to provide potent defense against infection. However, the compendium of data from murine infection models suggests that inflammasomes merely delay the course of disease, allowing the host time to mount an adaptive response. Interpretations of such results are confounded by inflammasome evasion strategies of vertebrate-adapted pathogens. Conversely, environmental opportunistic pathogens have not evolved in the context of inflammasomes, and are therefore less likely to evade them. Indeed, opportunistic pathogens do not normally cause disease in wild type animals. Accordantly, the extreme virulence of two opportunistic bacterial pathogens, Burkholderia thailandensis and Chromobacterium violaceum, is fully counteracted by inflammasomes in murine models. This leads us to propose a new hypothesis: perhaps animals maintain inflammasomes over evolutionary time not to defend against vertebrate-adapted pathogens, but instead to counteract infection by a plethora of undiscovered opportunistic pathogens residing in the environment

    A Phenotype at Last: Essential Role for the Yersinia enterocolitica Ysa Type III Secretion System in a Drosophila melanogaster S2 Cell Model

    No full text
    The highly pathogenic Yersinia enterocolitica strains have a chromosomally encoded type III secretion system (T3SS) that is expressed and functional in vitro only when the bacteria are cultured at 26°C. Mutations that render this system nonfunctional are slightly attenuated in the mouse model of infection only following an oral inoculation and only at early time points postinfection. The discrepancy between the temperature required for the Ysa gene expression and the physiological temperature required for mammalian model systems has made defining the role of this T3SS challenging. Therefore, we explored the use of Drosophila S2 cells as a model system for studying Ysa function. We show here that Y. enterocolitica is capable of infecting S2 cells and replicating intracellularly to high levels, an unusual feature of this pathogen. Importantly, we show that the Ysa T3SS is required for robust intracellular replication. A secretion-deficient mutant lacking the secretin gene, ysaC, is defective in replication within S2 cells, marking the first demonstration of a pronounced Ysa-dependent virulence phenotype. Establishment of S2 cells as a model for Y. enterocolitica infection provides a versatile tool to elucidate the role of the Ysa T3SS in the life cycle of this gastrointestinal pathogen
    corecore