66 research outputs found

    First investigation on microcrystalline pathologies of kidney allografts through cellular scale physicochemical techniques

    Get PDF
    AbstractTubulo-interstitial microcalcifications in renal transplant are described with a wide difference of incidence (4–78%) according to time and goal of biopsies. Currently, staining procedures are used to deduce the composition of crystals and speculate about their aetiologies. Here we test the contribution of infrared microspectroscopy (IR-MS) in understanding kidney transplant crystal deposits. First, microcalcifications observed in 118 allograft biopsies are studied by IR-MS. The Fourier transform infrared signal shows that a major proportion (92%) of calcium phosphate crystals is in the pure or mixed form. Next, we compare 50 patients with calcifications to 100 without calcifications and show persistent hyperparathyroidism and tubular cell vacuolization as circumstances of crystal deposition. Finally, the graduation level of calcification by IR-MS appears to be correlated with the graft outcome. Graft survival seems to be worse in case of high microcalcification detection by IR-MS. These preliminary data suggest IR-MS as a great tool for clinicians to diagnose, characterize, and quantify microcalcifications in kidney allografts

    Heme Drives Susceptibility of Glomerular Endothelium to Complement Overactivation Due to Inefficient Upregulation of Heme Oxygenase-1

    Get PDF
    Atypical hemolytic uremic syndrome (aHUS) is a severe disease characterized by microvascular endothelial cell (EC) lesions leading to thrombi formation, mechanical hemolysis and organ failure, predominantly renal. Complement system overactivation is a hallmark of aHUS. To investigate this selective susceptibility of the microvascular renal endothelium to complement attack and thrombotic microangiopathic lesions, we compared complement and cyto-protection markers on EC, from different vascular beds, in in vitro and in vivo models as well as in patients. No difference was observed for complement deposits or expression of complement and coagulation regulators between macrovascular and microvascular EC, either at resting state or after inflammatory challenge. After prolonged exposure to hemolysis-derived heme, higher C3 deposits were found on glomerular EC, in vitro and in vivo, compared with other EC in culture and in mice organs (liver, skin, brain, lungs and heart). This could be explained by a reduced complement regulation capacity due to weaker binding of Factor H and inefficient upregulation of thrombomodulin (TM). Microvascular EC also failed to upregulate the cytoprotective heme-degrading enzyme heme-oxygenase 1 (HO-1), normally induced by hemolysis products. Only HUVEC (Human Umbilical Vein EC) developed adaptation to heme, which was lost after inhibition of HO-1 activity. Interestingly, the expression of KLF2 and KLF4—known transcription factors of TM, also described as possible transcription modulators of HO-1- was weaker in micro than macrovascular EC under hemolytic conditions. Our results show that the microvascular EC, and especially glomerular EC, fail to adapt to the stress imposed by hemolysis and acquire a pro-coagulant and complement-activating phenotype. Together, these findings indicate that the vulnerability of glomerular EC to hemolysis is a key factor in aHUS, amplifying complement overactivation and thrombotic microangiopathic lesions

    Istradefylline protects from cisplatin-induced nephrotoxicity and peripheral neuropathy while preserving cisplatin antitumor effects

    Get PDF
    Cisplatin is a potent chemotherapeutic drug that is widely used in the treatment of various solid cancers. However, its clinical effectiveness is strongly limited by frequent severe adverse effects, in particular nephrotoxicity and chemotherapy-induced peripheral neuropathy. Thus, there is an urgent medical need to identify novel strategies that limit cisplatin-induced toxicity. In the present study, we show that the FDA-approved adenosine A2A receptor antagonist istradefylline (KW6002) protected from cisplatin-induced nephrotoxicity and neuropathic pain in mice with or without tumors. Moreover, we also demonstrate that the antitumoral properties of cisplatin were not altered by istradefylline in tumor-bearing mice and could even be potentiated. Altogether, our results support the use of istradefylline as a valuable preventive approach for the clinical management of patients undergoing cisplatin treatment

    MUC1 role in renal epithelial cell plasticity

    No full text
    MUC1 est une mucine membranaire dont l'expression est augmentée et altérée dans le cancer et l'ischémie rénale. La transition épithélium-mésenchyme (TEM) est un processus dynamique de plasticité cellulaire impliqué dans la progression métastatique et la réparation tissulaire. Nos travaux montraient l'implication de MUC1 dans la plasticité épithéliale rénale à travers l'action de MUC1 dans des lignées cancéreuses rénales et dans des modèles murin et humain de régénération rénale. Dans le carcinome rénal, nous démontrions que (i) MUC1 et SNAIL, facteur de transcription de la TEM, étaient surexprimés dans une série de carcinomes sarcomatoïdes, (ii) SNAIL augmentait indirectement l'expression MUC1, (iii) la surexpression de MUC1 induisait la TEM, (iv) le domaine C-terminal de MUC1 (MUC1-C) augmentait l'interaction de la beta-caténine avec le promoteur de SNAIL favorisant l'activité transcriptionnelle de SNAIL, et (v) le blocage de la localisation nucléaire de MUC1-C diminuait l'activation de la voie Wnt /beta caténine et celle de SNAIL. Au total, nos résultats démontraient que MUC1 est un acteur de la TEM rénale associé au cancer et apparaît comme une nouvelle cible thérapeutique.Dans la régénération rénale, nous montrions que (i) la régénération rénale s'accompagnait d'une plasticité épithéliale transitoire compatible avec une TEM dans un modèle murin et sur des biopsies de greffon humain, (ii) MUC1 était induite au cours de la TEM associée à la régénération, (iii) l'absence de MUC1 (souris Ko Muc1)s'associait à des lésions tubulaires rénales plus sévères, et (iv) l'induction de MUC1 était inversement corrélée au degré de fibrose rénale. Au total, nos résultats suggèrent un rôle de néphroprotection conféré par MUC1 aux cellules épithéliales rénales au cours de la régénération.MUC1 is overexpressed in renal carcinoma and ischemia. The epithelial-mesenchymal transition (EMT) is a dynamic process consisted of cellular plasticity involved in tumoral progression and tissue repair. Our work showed the involvement of MUC1 in renal epithelial plasticity through the action of MUC1 in renal cancer cell lines and in mouse and human kidney regeneration models.MUC1 is overexpressed in human carcinomas. The transcription factor SNAIL can activate epithelial-mesenchymal transition (EMT) in cancer cells. In this study, in renal carcinoma, we demonstrate that (i) MUC1 and SNAIL were overexpressed in human sarcomatoid carcinomas, (ii) SNAIL increased indirectly MUC1 expression, (iii) MUC1 overexpression induced EMT, (iv) MUC1 C-terminal domain (MUC1-C) and beta-catenin increased SNAIL transcriptional activity by interaction with its promoter and (v) blocking MUC1-C nuclear localization decreased Wnt/beta-catenin signaling pathway activation and SNAIL expression. Altogether, our findings demonstrate that MUC1 is an actor in EMT and appears as a new therapeutic target.In renal regeneration, we demonstrated that (i) regeneration was characterized by a transient EMT in mouse model and human biopsies allograft, (ii) MUC1 was induced during EMT-regeneration associated, (iii) the lack of MUC1 (Muc1 KO mouse) was associated with more severe renal tubular damage, and (iv) MUC1 induction was inversely correlated with renal fibrosis. Altogether, our results suggest MUC1 mitigates renal ischemic damage through EMT activation during regeneration

    Pregnancy as a susceptible state for thrombotic microangiopathies

    Get PDF
    Pregnancy and the postpartum period represent phases of heightened vulnerability to thrombotic microangiopathies (TMAs), as evidenced by distinct patterns of pregnancy-specific TMAs (e.g., preeclampsia, HELLP syndrome), as well as a higher incidence of nonspecific TMAs, such as thrombotic thrombocytopenic purpura or hemolytic uremic syndrome, during pregnancy. Significant strides have been taken in understanding the underlying mechanisms of these disorders in the past 40 years. This progress has involved the identification of pivotal factors contributing to TMAs, such as the complement system, ADAMTS13, and the soluble VEGF receptor Flt1. Regardless of the specific causal factor (which is not generally unique in relation to the usual multifactorial origin of TMAs), the endothelial cell stands as a central player in the pathophysiology of TMAs. Pregnancy has a major impact on the physiology of the endothelium. Besides to the development of placenta and its vascular consequences, pregnancy modifies the characteristics of the women’s microvascular endothelium and tends to render it more prone to thrombosis. This review aims to delineate the distinct features of pregnancy-related TMAs and explore the contributing mechanisms that lead to this increased susceptibility, particularly influenced by the “gravid endothelium.” Furthermore, we will discuss the potential contribution of histopathological studies in facilitating the etiological diagnosis of pregnancy-related TMAs

    Découverte fortuite d’une atteinte hépatique d’amylose à leukocyte chemotactic factor 2

    No full text
    International audienceLeukocyte cell-derived chemotaxin 2-associated amyloidosis (ALECT2) is a recently described of amyloidosis described in the United States in 2007. It is a systemic disease that is predominantly associated with some ethnics groups. ALECT2 is usually diagnosed on a kidney biopsy performed in the context of slowly progressive chronic renal disease but can also be found incidentally on a liver sample. We report the case of a Syrian patient who benefited from a partial hepatectomy for the treatment of multiple metastasis of a colorectal adenocarcinoma. Microscopic analysis of the surgical specimen revealed numerous amyloid deposits that did not match any of the usual forms of liver amyloidosis after immunohistochemistry typing. Some morphologic features of the deposits were highly suggestive of ALECT2. Complementary immunohistochemical study and mass spectrometry confirmed the diagnosis

    Asymptomatic Hyperuricemia Promotes Recovery from Ischemic Organ Injury by Modulating the Phenotype of Macrophages

    No full text
    Acute organ injury, such as acute kidney injury (AKI) and disease (AKD), are major causes of morbidity and mortality worldwide. Hyperuricemia (HU) is common in patients with impaired kidney function but the impact of asymptomatic HU on the different phases of AKI/AKD is incompletely understood. We hypothesized that asymptomatic HU would attenuate AKD because soluble, in contrast to crystalline, uric acid (sUA) can attenuate sterile inflammation. In vitro, 10 mg/dL sUA decreased reactive oxygen species and interleukin-6 production in macrophages, while enhancing fatty acid oxidation as compared with a physiological concentration of 5 mg/dL sUA or medium. In transgenic mice, asymptomatic HU of 7–10 mg/dL did not affect post-ischemic AKI/AKD but accelerated the recovery of kidney excretory function on day 14. Improved functional outcome was associated with better tubular integrity, less peritubular inflammation, and interstitial fibrosis. Mechanistic studies suggested that HU shifted macrophage polarization towards an anti-inflammatory M2-like phenotype characterized by expression of anti-oxidative and metabolic genes as compared with post-ischemic AKI-chronic kidney disease transition in mice without HU. Our data imply that asymptomatic HU acts as anti-oxidant on macrophages and tubular epithelial cells, which endorses the recovery of kidney function and structure upon AKI

    Targeting miR-21 decreases expression of multi-drug resistant genes and promotes chemosensitivity of renal carcinoma

    No full text
    International audienceRenal cell carcinoma, the most common neoplasm of adult kidney, accounts for about 3% of adult malignancies and is usually highly resistant to conventional therapy. MicroRNAs are a class of small non-coding RNAs, which have been previously shown to promote malignant initiation and progression. In this study, we focused our attention on miR-21, a well described oncomiR commonly upregulated in cancer. Using a cohort of 99 primary renal cell carcinoma samples, we showed that miR-21 expression in cancer tissues was higher than in adjacent non-tumor tissues whereas no significant difference was observed with stages, grades, and metastatic outcome. In vitro, miR-21 was also overexpressed in renal carcinoma cell lines compared to HK-2 human proximal tubule epithelial cell line. Moreover, using Boyden chambers and western blot techniques, we also showed that miR-21 overexpression increased migratory, invasive, proliferative, and anti-apoptotic signaling pathways whereas opposite results were observed using an anti-miR-21-based silencing strategy. Finally, we assessed the role of miR-21 in mediating renal cell carcinoma chemoresistance and further showed that miR-21 silencing significantly (1) increased chemosensitivity of paclitaxel, 5-fluorouracil, oxaliplatin, and dovitinib; (2) decreased expression of multi-drug resistance genes; and (4) increased SLC22A1/OCT1, SLC22A2/OCT2, and SLC31A1/CTR1 platinum influx transporter expression. In conclusion, our results showed that miR-21 is a key actor of renal cancer progression and plays an important role in the resistance to chemotherapeutic drugs. In renal cell carcinoma, targeting miR-21 is a potential new therapeutic strategy to improve chemotherapy efficacy and consequently patient outcome
    • …
    corecore