29 research outputs found

    Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy

    Full text link
    We review HB stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters (GCs) in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the second-parameter problem is presented. A technique is proposed to estimate the HB types of extragalactic GCs on the basis of integrated far-UV photometry. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyrae, is also revisited, giving a distance modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are studied. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and Space Scienc

    Toward an internally consistent astronomical distance scale

    Full text link
    Accurate astronomical distance determination is crucial for all fields in astrophysics, from Galactic to cosmological scales. Despite, or perhaps because of, significant efforts to determine accurate distances, using a wide range of methods, tracers, and techniques, an internally consistent astronomical distance framework has not yet been established. We review current efforts to homogenize the Local Group's distance framework, with particular emphasis on the potential of RR Lyrae stars as distance indicators, and attempt to extend this in an internally consistent manner to cosmological distances. Calibration based on Type Ia supernovae and distance determinations based on gravitational lensing represent particularly promising approaches. We provide a positive outlook to improvements to the status quo expected from future surveys, missions, and facilities. Astronomical distance determination has clearly reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press (chapter 8 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. I. Discovery of the optical counterpart using the Dark Energy Camera

    Get PDF
    We present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational wave emission, GW170817. Our observations commenced 10.5 hours post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg2 in the i and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hours post-merger we detected a bright optical transient located 10:600 from the nucleus of NGC4993 at redshift z = 0:0098, consistent (for H0 = 70 km s-1 Mpc-1) with the distance of 40±8 Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes i=17.3 and z=17.4, and thus an absolute magnitude of Mi = -15.7, in the luminosity range expected for a kilonova. We identified 1,500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves, and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources

    Sub-structures in the inner halo of the Milky Way

    No full text
    We present a spectroscopic study of a sample of 238 RR Lyrae stars, from the QUEST survey, located in the Galactic halo at distances between 4 and 20 kpc from the Sun. Combining their spatial position and kinematics we were able to identify sub-structures in this part of the halo. Some of those sub-structures may be associated with known halo features like the Virgo Overdensity, the Hercules-Aquila Cloud, and the Anticenter Stream

    Sub-structures in the inner halo of the Milky Way

    No full text
    We present a spectroscopic study of a sample of 238 RR Lyrae stars, from the QUEST survey, located in the Galactic halo at distances between 4 and 20 kpc from the Sun. Combining their spatial position and kinematics we were able to identify sub-structures in this part of the halo. Some of those sub-structures may be associated with known halo features like the Virgo Overdensity, the Hercules-Aquila Cloud, and the Anticenter Stream
    corecore