304 research outputs found

    Thermoplastic Materials for the Metal Replacement of Non-Structural Components in Marine Engines

    Get PDF
    Metal replacements for automotive and aerospace components are already a consolidated reality, in light of the advantages offered by fibre-reinforced polymers, consisting of reduced costs, weight, and environmental impact. As a result, engineering has been studying the possibility of replacing currently used metallic alloys with alternative materials, such as thermoplastic fibre-reinforced polymers, in the manufacturing of non-structural sections of marine engines. Given the peculiar characteristics of the working environment of such parts, i.e., ship engine spaces, and the strict requirements regarding safety, the selection of the polymer must be properly performed through a tailored material design process. Consequently, the redesign of the components must be carried out with the aim of exploiting the best of the materials’ properties while ensuring the correct resistance and simplifying installation operations. In this framework, finite element simulations may represent a suitable approach to validate the conformity of the proposed material and design. In this paper, this methodology is applied to a camshaft cover of a four-stroke marine engine, currently made of aluminium alloy. A 30% wt GFs/PA6,6 was identified as the most promising material and the novel plastic cover proved to guarantee the correct resistance while ensuring an important reduction in weight, processing costs, and required energy

    Electrification of Vessels for Garbage Collection and Treatment in Venice Lagoon

    Get PDF
    Nowadays, reducing pollutant emissions is of fundamental importance. In particular, in areas where urban public transport is carried out almost exclusively by boats, these represent the primary factors on which it is necessary to intervene. The conversion of current diesel units into hybridpropelled ones is essential to preserve the marina and the environment in areas considered UNESCO heritage sites such as Venice. This document concerns the study of the first hybrid vessel built for garbage collection in the old town of Venice. Paying attention to the system engineering innovations and the results of the tests carried out on board, the authors present some considerations regarding the changes necessary to convert the current diesel propulsion into a hybrid one, with the aim to enable navigation in Zero Emission Mode

    Expression of verocytotoxic Escherichia coli antigens in tobacco seeds and evaluation of gut immunity after oral administration in mouse model

    Get PDF
    Verocytotoxic Escherichia (E.) coli strains are responsible for swine oedema disease, which is an enterotoxaemia that causes economic losses in the pig industry. The production of a vaccine for oral administration in transgenic seeds could be an efficient system to stimulate local immunity. This study was conducted to transform tobacco plants for the seed-specific expression of antigenic proteins from a porcine verocytotoxic E. coli strain. Parameters related to an immunological response and possible adverse effects on the oral administration of obtained tobacco seeds were evaluated in a mouse model. Tobacco was transformed via Agrobacteium tumefaciens with chimeric constructs containing structural parts of the major subunit FedA of the F18 adhesive fimbriae and VT2e B-subunit genes under control of a seed specific GLOB promoter. We showed that the foreign Vt2e-B and F18 genes were stably accumulated in storage tissue by the immunostaining method. In addition, Balb-C mice receiving transgenic tobacco seeds via the oral route showed a significant increase in IgA-positive plasma cell presence in tunica propria when compared to the control group with no observed adverse effects. Our findings encourage future studies focusing on swine for evaluation of the protective effects of transformed tobacco seeds against E. coli infection

    Surgical Treatment Strategies and Prognosis of Hepatocellular Carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC is the fifth most common cause of mortality worldwide and the third cancer related cause and is responsible for about 1 million deaths yearly [1]. The ageadjusted worldwide incidence is 5.5-14.9 per 100.000 population. In some areas of the world, such as sub-Saharan Africa and Southeast Asia, HCC represents the first cause of cancer death with an incidence of 52 per 100.000. Furthermore, in Europe and USA, HCC incidence has progressively raised in the past decade representing a burden problem. HCC is one of the few cancers for which a number of risk factors are known in great detail [2, 3]. HCC is almost always (80%) associated with cirrhosis, at least in developed countries, and chronic hepatitis C and B infection, alcoholic cirrhosis and haemocromatosis are some of the established risk factors [4]. The metabolic syndrome related to hypertension, central obesity, diabetes and obesity has been identified as a new risk factor. As a result, screening programs have developed, with the use of ultrasound and \u3b1-fetoprotein (AFP), with a hope to increase the chances of diagnosing small HCC and unltimately increase the rate of curability. Definitive diagnosis relies on the demonstration of a typical vascular pattern per liver imaging techniques (triple-phase CT-scan or MRI) of tumors larger than 2 cm with arterial hypervascularity and venous wash- out. Nodules, smaller than 2 cm, should be rechecked every six months or, if highly suspect, subjected to needle biopsy. It\u2019s likely that the study of tumor-specific tissue markers with prognostic value could introduce a systematic use of needle biopsy. Over the past 20 years, surgical treatment of hepatocellular carcinoma has seen an immense boost and improvement, with good survival outcomes and reduced morbidity and mortality.Liver resection (LR) and orthotopic liver transplantation (OLT) and ablative therapies are now considered the only potentially curative treatments for this cancer. LR has achieved improvement in survival within the past decade as a result of advances in diagnosis, surgical management of HCC and perioperative care. However, the long-term prognosis remains poor, and the 5-year overall survival rate ranges between 33% and 44%, with a 5-year cumulative recurrence rate of 80% to 100%. OLT could be viewed as the optimal treatment for HCC that is accompanied by advanced cirrhosis because of the widest possible resection margins for tumour and for a definitive cure of cirrhosis and its related complications. OLT for HCC performed within well-defined oncologic criteria (Milan criteria \u201creference\u201d) has shown long-term results comparable with those of transplantation for non-HCC patients. However, the critical shortage of available donated organs, together with the increasing number of patients awaiting transplantation, makes this therapeutic option available to only a small percentage of patients. Owing to the limited organ supply, many liver transplant centers usually make a selection to resect patients with compensated liver cirrhosis, defined as Child\u2013Pugh A chronic liver disease and resectable tumor and to reserve transplantation for those with impaired liver function (Child-Pugh class B-C) and small oligonodular HCC considered within the currently accepted criteria for transplantation. Radiofrequency and microwave ablation are relatively new percutaneous techniques in clinical use for HCC, that can produce tumour necrosis. Complete response rates are high in large series if tumour is less that 3 cm in diameter. This chapter will consider the main surgical techniques for the treatment of HCC in the light of the major guidelines currently available and of personal experience. Also, we will review HCC prognostic factors, and the particular situation of \u201clarge\u201d HCC and the strategy for liver tumours located at the hepato-caval confluence

    Investigation on Hydrazonobenzenesulfonamides as Human Carbonic Anhydrase I, II, IX and XII Inhibitors

    Get PDF
    A small series of hydrazonobenzenesulfonamides was designed, synthesized and studied for their human carbonic anhydrase (hCA) inhibitory activity. The synthesized compounds were evaluated against hCA I, II, IX and XII isoforms using acetazolamide (AAZ) as the standard inhibitor. Various hydrazonosulfonamide derivatives showed inhibitory activity at low nanomolar levels with selectivity against the cytosolic hCA II isoform, as well as the transmembrane, tumor-associated enzymes hCA IX and XII. The most potent and selective hydrazones 8, 9, 10, 11, 19 and 24 were docked into isoforms I, II, IX and XII to better understand their activity and selectivity for the different CA isoforms

    Violacein, an indole-derived purple-colored natural pigment produced by Janthinobacterium lividum, inhibits the growth of head and neck carcinoma cell lines both in vitro and in vivo

    Get PDF
    Violacein (VIO; 3-[1,2-dihydro-5-(5-hydroxy-1H-indol-3-yl)-2-oxo-3H-pyrrol-3-ylidene]-1,3-dihydro-2H-indol-2-one), an indole-derived purple-colored pigment, produced by a limited number of Gram-negative bacteria species, including Chromobacterium violaceum and Janthinobacterium lividum, has been demonstrated to have anti-cancer activity, as it interferes with survival transduction signaling pathways in different cancer models. Head and neck carcinoma (HNC) represents the sixth most common and one of the most fatal cancers worldwide. We determined whether VIO was able to inhibit head and neck cancer cell growth both in vitro and in vivo. We provide evidence that VIO treatment of human and mouse head and neck cancer cell lines inhibits cell growth and induces autophagy and apoptosis. In fact, VIO treatment increased PARP-1 cleavage, the Bax/Bcl-2 ratio, the inhibition of ERK1 and ERK2 phosphorylation, and the expression of light chain 3-II (LC3-II). Moreover, VIO was able to induce p53 degradation, cytoplasmic nuclear factor kappa B (NF-ÎşB) accumulation, and reactive oxygen species (ROS) production. VIO induced a significant increase in ROS production. VIO administration was safe in BALB/c mice and reduced the growth of transplanted salivary gland cancer cells (SALTO) in vivo and prolonged median survival. Taken together, our results indicate that the treatment of head and neck cancer cells with VIO can be useful in inhibiting in vivo and in vitro cancer cell growth. VIO may represent a suitable tool for the local treatment of HNC in combination with standard therapies

    Syntheses, reactivity, and biological applications of coumarins

    Get PDF
    This comprehensive review, covering 2021–2023, explores the multifaceted chemical and pharmacological potential of coumarins, emphasizing their significance as versatile natural derivatives in medicinal chemistry. The synthesis and functionalization of coumarins have advanced with innovative strategies. This enabled the incorporation of diverse functional fragments or the construction of supplementary cyclic architectures, thereby the biological and physico-chemical properties of the compounds obtained were enhanced. The unique chemical structure of coumarine facilitates binding to various targets through hydrophobic interactions pi-stacking, hydrogen bonding, and dipole-dipole interactions. Therefore, this important scaffold exhibits promising applications in uncountable fields of medicinal chemistry (e.g., neurodegenerative diseases, cancer, inflammation)

    Characterization and effect of year of harvest on the nutritional properties of three varieties of white lupine (Lupinus albus L.)

    Get PDF
    BACKGROUND: Three cultivars of Lupinus albus L. (Lutteur, Lublanca and Multitalia) were assessed for proximate composition, fatty acids, alkaloids and in vitro fermentation characteristics over three harvest years. RESULTS: The chemical composition varied greatly during the three harvest years. Crude protein content ranged from 353 to 456 g kg-1 dry matter (DM), neutral detergent fiber content from 209 to 321 g kg-1 DM and lignin content from 3.0 to 63.9 g kg-1 DM. Lublanc showed the highest crude protein (417 g kg-1 DM) and lignin (35 g kg-1 DM) contents. High levels of lipids (89.9gkg-1 DM) and starch (93.3 g kg-1 DM) were found in all samples. Alkaloid content ranged from 3.63 to 165mg per 100g. Lutteur and Lublanc showed more favorable n-3/n-6 polyunsaturated fatty acid ratios (from 0.44 to 0.73) and lower values of the anti-quality factor 'erucic acid' (from 5.8 to 20.9 g kg-1) than Multitalia. Lutteur showed higher degradability (897 g kg-1), gas production (330 mL g-1 organic matter (OM)) and volatile fatty acid production (117mmolg-1 OM) than the other varieties. CONCLUSION: The present data suggest L. albus L. cv. Lutteur to be a promising crop as food thanks to its high nutritive traits and most constant yield over time

    A new laser device for ultra-rapid and sustainable aerosol sterilization

    Get PDF
    The current COVID-19 pandemic has highlighted the importance of aerosol-based transmission of human pathogens; this therefore calls for novel medical devices which are able to sterilize contaminated aerosols. Here we describe a new laser device able to sterilize droplets containing either viruses or bacteria. Using engineered viral particles, we determined the 10,600 nm wavelength as the most efficient and exploitable laser source to be manufactured in a commercial device. Given the lack of existing working models to reproduce a human aerosol containing living microbial particles, we developed a new system mimicking human droplet formation and preserving bacterial and viral viability. This evidenced the efficacy of 10,600 nm laser light to kill two aerosol transmitted human pathogens, Legionella pneumophila and SARS-CoV-2. The minimal exposure time of <15 ms was required for the inactivation of over 99% pathogens in the aerosol; this is a key element in the design of a device that is safe and can be used in preventing inter-individual transmission. This represents a major advantage over existing devices, which mainly aim at either purifying incoming air by filters or sterilizing solid surfaces, which are not the major transmission routes for airborne communicable diseases

    Evaluation of antigens stability of tobacco seeds as edible vaccine against VTEC strains

    Get PDF
    Plants have represent a promising alternative for biopharmaceutical proteins (Ma et al., 2003; Rossi et al., 2014). Many plant based edible vaccines have been shown to be effective in inducing local immune responses (Rossi et al., 2013). Edible vaccines can activate both mucosal and systemic immunity, as they come in contact with the digestive tract lining. This dual effect would provide first-line defense against pathogens invading through the mucosa. The antigens are released in the intestines are taken up by M cells that are present over the Payer’s patches (in the ileum) and the gut associated lymphoid tissue (GALT). Edible vaccines represent an important worldwide goal for the prevention of the enteric diseases, also in livestock. In particular, the enteric infections are a significant clinical problem in pigs. Verocytotoxic Escherichia (E.) coli strains are responsible for serious enterotoxaemia that causes important economic losses in the pig industry. The production of a vaccine for oral administration of transgenic seeds could be a practical and efficient system to prevent the infection and to reduce the antibiotic use. This study was focused on tobacco plants, previously transformed by agroinfection for the seed-specific expression of antigenic proteins (F18 adhesive fimbriae and the B subunit of the Vt2e toxin) as model of edible vaccines against verocytotoxic E. coli strains. The dietary administration of transgenic tobacco seeds promotes a significant increase in the number of mucosal IgA-producing cells of the tunica propria in both small and large intestine in mice (Rossi et al., 2013). A protective effect of oral administration of transgenic tobacco seeds was also observed against verocytotoxic Escherichia coli infection in piglets (Rossi et al., 2014). The aim of this study was to assess the seed-expression stability, that is a important requirement in the vaccine production, of F 18 and Vt2e-B heterologous genes into the progeny of transformed tobacco plants
    • …
    corecore