126 research outputs found
Zinc oxide nanoparticles as selective killers of proliferating cells
Background: It has recently been demonstrated that zinc oxide nanoparticles (ZnO NPs) induce death of cancerous cells whilst having no cytotoxic effect on normal cells. However, there are several issues which need to be resolved before translation of zinc oxide nanoparticles into medical use, including lack of suitable biocompatible dispersion protocols and a better understanding being needed of the mechanism of their selective cytotoxic action.
Methods: Nanoparticle dose affecting cell viability was evaluated in a model of proliferating cells both experimentally and mathematically. The key issue of selective toxicity of ZnO NPs toward proliferating cells was addressed by experiments using a biological model of noncancerous cells, ie, mesenchymal stem cells before and after cell differentiation to the osteogenic lineage.
Results: In this paper, we report a biocompatible protocol for preparation of stable aqueous solutions of monodispersed zinc oxide nanoparticles. We found that the threshold of intracellular ZnO NP concentration required to induce cell death in proliferating cells is 0.4 ± 0.02 mM. Finally, flow cytometry analysis revealed that the threshold dose of zinc oxide nanoparticles was lethal to proliferating pluripotent mesenchymal stem cells but exhibited negligible cytotoxic effects to osteogenically differentiated mesenchymal stem cells.
Conclusion: Results confirm the ZnO NP selective cytotoxic action on rapidly proliferating cells, whether benign or malignant
Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings
A one-dimensional dielectric grating, based on a simple geometry, is proposed
and investigated to enhance light absorption in a monolayer graphene exploiting
guided mode resonances. Numerical findings reveal that the optimized
configuration is able to absorb up to 60% of the impinging light at normal
incidence for both TE and TM polarizations resulting in a theoretical
enhancement factor of about 26 with respect to the monolayer graphene
absorption (about 2.3%). Experimental results confirm this behaviour showing
CVD graphene absorbance peaks up to about 40% over narrow bands of few
nanometers. The simple and flexible design paves the way for the realization of
innovative, scalable and easy-to-fabricate graphene-based optical absorbers
Graphene-based perfect optical absorbers harnessing guided mode resonances
We numerically and experimentally investigate graphene-based optical
absorbers that exploit guided mode resonances (GMRs) achieving perfect
absorption over a bandwidth of few nanometers (over the visible and
near-infrared ranges) with a 40-fold increase of the monolayer graphene
absorption. We analyze the influence of the geometrical parameters on the
absorption rate and the angular response for oblique incidence. Finally, we
experimentally verify the theoretical predictions in a one-dimensional,
dielectric grating and placing it near either a metallic or a dielectric
mirror
Growth Kinetics and Sensing Features of Colloidal Silver Nanoplates
This paper presents the growth mechanisms and the plasmon sensing features for a large class of silver nanoplates obtained in the colloidal form. The synthesis is conducted by seed-mediated growth and leads to plates with aspect ratios as large as 20, having localized surface plasmon resonances extending deeply into the infrared spectral region (1000 nm and above). We measure plasmon sensitivity by varying the colloidal local refractive index, and Δλ/Δn sensitivity values up to 500 nm/RIU are obtained. Theoretical considerations regarding the correlation between the refractive index sensitivity and the position of the main localized plasmon resonance band demonstrate that plasmon sensitivity does not depend directly on the nanoparticle shape and aspect ratio
Carbon Nanohorns as Effective Nanotherapeutics in Cancer Therapy
Different carbon nanostructures have been explored as functional materials for the development of effective nanomaterials in cancer treatment applications. This review mainly aims to discuss the features, either strength or weakness, of carbon nanohorn (CNH), carbon conical horn-shaped nanostructures of sp2 carbon atoms. The interest for these materials arises from their ability to couple the clinically relevant properties of carbon nanomaterials as drug carriers with the negligible toxicity described in vivo. Here, we offer a comprehensive overview of the recent advances in the use of CNH in cancer treatments, underlining the benefits of each functionalization route and approach, as well as the biological performances of either loaded and unloaded materials, while discussing the importance of delivery devices
Recommended from our members
Polyphenols delivery by polymeric materials: challenges in cancer treatment
Nanotechnology can offer different solutions for enhancing the therapeutic efficiency of polyphenols, a class of natural products widely explored for a potential applicability for the treatment of different diseases including cancer. While possessing interesting anticancer properties, polyphenols suffer from low stability and unfavorable pharmacokinetics, and thus suitable carriers are required when planning a therapeutic protocol. In the present review, an overview of the different strategies based on polymeric materials is presented, with the aim to highlight the strengths and the weaknesses of each approach and offer a platform of ideas for researchers working in the field
Recent advances in the synthesis and biomedical applications of nanocomposite hydrogels
Hydrogels sensitive to electric current are usually made of polyelectrolytes and undergo erosion, swelling, de-swelling or bending in the presence of an applied electric field. The electrical conductivity of many polymeric materials used for the fabrication of biomedical devices is not high enough to achieve an effective modulation of the functional properties, and thus, the incorporation of conducting materials (e.g., carbon nanotubes and nanographene oxide) was proposed as a valuable approach to overcome this limitation. By coupling the biological and chemical features of both natural and synthetic polymers with the favourable properties of carbon nanostructures (e.g., cellular uptake, electromagnetic and magnetic behaviour), it is possible to produce highly versatile and effective nanocomposite materials. In the present review, the recent advances in the synthesis and biomedical applications of electro-responsive nanocomposite hydrogels are discussed
Curcumin and Graphene Oxide Incorporated into Alginate Hydrogels as Versatile Devices for the Local Treatment of Squamous Cell Carcinoma
With the aim of preparing hybrid hydrogels suitable for use as patches for the local treatment of squamous cell carcinoma (SCC)-affected areas, curcumin (CUR) was loaded onto graphene oxide (GO) nanosheets, which were then blended into an alginate hydrogel that was crosslinked by means of calcium ions. The homogeneous incorporation of GO within the polymer network, which was confirmed through morphological investigations, improved the stability of the hybrid system compared to blank hydrogels. The weight loss in the 100–170 °C temperature range was reduced from 30% to 20%, and the degradation of alginate chains shifted to higher temperatures. Moreover, GO enhanced the stability in water media by counteracting the de-crosslinking process of the polymer network. Cell viability assays showed that the loading of CUR (2.5% and 5% by weight) was able to reduce the intrinsic toxicity of GO towards healthy cells, while higher amounts were ineffective due to the antioxidant/prooxidant paradox. Interestingly, the CUR-loaded systems were found to possess a strong cytotoxic effect in SCC cancer cells, and the sustained CUR release (~50% after 96 h) allowed long-term anticancer efficiency to be hypothesized
The ETS Homologous Factor (EHF) Represents a Useful Immunohistochemical Marker for Predicting Prostate Cancer Metastasis.
The main aim of this study was to investigate the risk of prostate cancer metastasis formation associated with the expression of ETS homologous factor (EHF) in a cohort of bioptic samples. To this end, the expression of EHF was evaluated in a cohort of 152 prostate biopsies including primary prostate cancers that developed metastatic lesions, primary prostate cancers that did not develop metastasis, and benign lesions. Data here reported EHF as a candidate immunohistochemical prognostic biomarker for prostate cancer metastasis formation regardless of the Gleason scoring system. Indeed, our data clearly show that primary lesions with EHF positive cells ≥40% had a great risk of developing metastasis within five years from the first diagnosis. Patients with these lesions had about a 40-fold increased risk of developing metastasis as compared with patients with prostate lesions characterized by a percentage of EHF positive cells ≤30%. In conclusion, the immunohistochemical evaluation of EHF could significantly improve the management of prostate cancer patients by optimizing the diagnostic and therapeutic health procedures and, more important, ameliorating the patient's quality of life
- …