67 research outputs found

    Enhancement of digital images through band ratio techniques for geological applications

    Get PDF
    The fundamentals in the use of band ratio techniques to enhance spectral signatures of geologic interest are discussed. The path radiance, additive term of the measured radiance at any given wavelength, is almost completely eliminated from LANDSAT images by subtracting the smallest value of the radiance measured in each channel, at shadows caused by topographic relief and clouds, and deep clear water bodies. By ratioing successive spectral channels the effect of solar angle of elevation is minimized and the product expresses, to a first approximation, a relationship between reflectances, which are intrinsic characteristics of the targets. Ratios between noncorrelated channels, such as R 7/4, R 7/5, and R 6/4 are useful to show variations in the vegetation cover, probably related to geobotanical associations

    Multiseasonal variables in digital image enhancements for geological applications

    Get PDF
    Examples of enhanced multiseasonal orbital imagery illustrate the influence of multiseasonal changes in their spatial and spectral attributes, and consequently in their application to structural geology and lithological discrimination. Shadow effects associated with appropriate solar elevation and azimuth effects enhance the spatial attributes but not the spectral. In this case, variations in illumination conditions should be minimized by selecting images with high solar elevation and by the use of techniques that minimize illumination conditions. Multiseasonal imagery should be used in the identification of spectral contrast changes of rock-soil-vegetation associations which can provide evidences of related lithological units and structural features. The extraction of maximum geological information requires, at least, a fall/winter and a spring/summer scene from which spatial, spectral and multiseasonal attributes can be adequately explored

    Some aspects of geological information contained in LANDSAT images

    Get PDF
    The characteristics of MSS images and methods of interpretation are analyzed from a geological point of view. The supportive role of LANDSAT data are illustrated in several examples of surface expressions of geological features, such as synclines and anticlines, spectral characteristics of lithologic units, and circular impact structures

    Assessment of computer techniques for processing digital LANDSAT MSS data for lithological discrimination of Serra do Ramalho, State of Bahia

    Get PDF
    Enhancement techniques and thematic classifications were applied to the metasediments of Bambui Super Group (Upper Proterozoic) in the Region of Serra do Ramalho, SW of the state of Bahia. Linear contrast stretch, band-ratios with contrast stretch, and color-composites allow lithological discriminations. The effects of human activities and of vegetation cover mask and limit, in several ways, the lithological discrimination with digital MSS data. Principal component images and color composite of linear contrast stretch of these products, show lithological discrimination through tonal gradations. This set of products allows the delineations of several metasedimentary sequences to a level superior to reconnaissance mapping. Supervised (maximum likelihood classifier) and nonsupervised (K-Means classifier) classification of the limestone sequence, host to fluorite mineralization show satisfactory results

    The computer treatment of remotely sensed data: An introduction to techniques which have geologic applications

    Get PDF
    Several aspects of computer-assisted analysis techniques for image enhancement and thematic classification by which LANDSAT MSS imagery may be treated quantitatively are explained. On geological applications, computer processing of digital data allows, possibly, the fullest use of LANDSAT data, by displaying enhanced and corrected data for visual analysis and by evaluating and assigning each spectral pixel information to a given class

    2-D geoelectrical model for the Parnaiba Basin conductivity anomaly of northeast Brazil and tectonic implications

    Get PDF
    A magnetometer array study in the north-northeast of Brazil has revealed a roughly NE-SW-trending conductive structure in the southeastern part of the intracratonic Parnaíba Basin. The magnetovariational response functions of this structure are numerically modelled to constrain its geometry to facilitate its geological and tectonic interpretation. The 2-D numerical model that incorporates the ocean effect and can account for the spatial and period dependence of the observed response locates the source regions of enhanced conductivity in a graben structure in the basement as well as in a block confined to the central part of the basin with an embedded resistive body. The anomalous electrical character of the sediments in the central part of the basin is consistent with the magnetotelluric data, the graben structure in the basement is corroborated by the aeromagnetic data. The formation of the graben structure is considered to be a manifestation of the extensional tectonics associated either with the Brasiliano orogeny or with the Jurassic–Cretaceous magmatic events. The diabase dikes intruded in the basin in association with the Jurassic-Cretaceous magmatic activity are shown to be accountable for the mapped resistive body entrapped in the conducting Paleozoic sediments. The thermal effects associated with magmatic activities are invoked to produce enhanced conductivity by the generation of carbon through the pyrolysis of hydrocarbon-saturated sediments

    A trehalose biosynthetic enzyme doubles as an osmotic stress sensor to regulate bacterial morphogenesis

    Get PDF
    The dissacharide trehalose is an important intracellular osmoprotectant and the OtsA/B pathway is the principal pathway for trehalose biosynthesis in a wide range of bacterial species. Scaffolding proteins and other cytoskeletal elements play an essential role in morphogenetic processes in bacteria. Here we describe how OtsA, in addition to its role in trehalose biosynthesis, functions as an osmotic stress sensor to regulate cell morphology in Arthrobacter strain A3. In response to osmotic stress, this and other Arthrobacter species undergo a transition from bacillary to myceloid growth. An otsA null mutant exhibits constitutive myceloid growth. Osmotic stress leads to a depletion of trehalose-6-phosphate, the product of the OtsA enzyme, and experimental depletion of this metabolite also leads to constitutive myceloid growth independent of OtsA function. In vitro analyses indicate that OtsA can self-assemble into protein networks, promoted by trehalose-6-phosphate, a property that is not shared by the equivalent enzyme from E. coli, despite the latter's enzymatic activity when expressed in Arthrobacter. This, and the localization of the protein in non-stressed cells at the mid-cell and poles, indicates that OtsA from Arthrobacter likely functions as a cytoskeletal element regulating cell morphology. Recruiting a biosynthetic enzyme for this morphogenetic function represents an intriguing adaptation in bacteria that can survive in extreme environments

    Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our previously published reports have described an effective biocontrol agent named <it>Pseudomonas </it>sp. M18 as its 16S rDNA sequence and several regulator genes share homologous sequences with those of <it>P. aeruginosa</it>, but there are several unusual phenotypic features. This study aims to explore its strain specific genomic features and gene expression patterns at different temperatures.</p> <p>Results</p> <p>The complete M18 genome is composed of a single chromosome of 6,327,754 base pairs containing 5684 open reading frames. Seven genomic islands, including two novel prophages and five specific non-phage islands were identified besides the conserved <it>P. aeruginosa </it>core genome. Each prophage contains a putative chitinase coding gene, and the prophage II contains a <it>capB </it>gene encoding a putative cold stress protein. The non-phage genomic islands contain genes responsible for pyoluteorin biosynthesis, environmental substance degradation and type I and III restriction-modification systems. Compared with other <it>P. aeruginosa </it>strains, the fewest number (3) of insertion sequences and the most number (3) of clustered regularly interspaced short palindromic repeats in M18 genome may contribute to the relative genome stability. Although the M18 genome is most closely related to that of <it>P. aeruginosa </it>strain LESB58, the strain M18 is more susceptible to several antimicrobial agents and easier to be erased in a mouse acute lung infection model than the strain LESB58. The whole M18 transcriptomic analysis indicated that 10.6% of the expressed genes are temperature-dependent, with 22 genes up-regulated at 28°C in three non-phage genomic islands and one prophage but none at 37°C.</p> <p>Conclusions</p> <p>The <it>P. aeruginosa </it>strain M18 has evolved its specific genomic structures and temperature dependent expression patterns to meet the requirement of its fitness and competitiveness under selective pressures imposed on the strain in rhizosphere niche.</p
    • …
    corecore