659 research outputs found

    Impact of atmospherical stability and intra-hour variation of meteorological data in the variability of building air change rates

    Get PDF
    In contrast with structural engineering, where the focus for design is on extreme values, for the proper assessment and modelling of air change rates in natural ventilation and infiltration, one must use the full range of input variables. Most of the modelling in infiltration research relies on hourly datasets for air infiltration balance. This consideration overlooks the intra-hour variability on meteorological variables. Additionally, it is customary to assume unchanging neutral atmospheric conditions when modelling, which affects the calculated airflows. This work intends to detail and quantify these effects in a case study representative of an average single-family dwelling in a Southern European climate setup. By comparing four setups with an increasing degree of complexity, a median of 0.04 h(-1) of the hourly standard deviations in air change rates (ACH) is attributed to the time step effect. Approximately 43% of the occurrences experienced non-neutral atmospheric stability, skewing for stable conditions. This effect contributed to differences in the ACHs ranging from-0.202 to 0.131 h(-1) at the 5% and 95% quantiles. Overall, by using hourly uniform distributions and smart sampling of meteorological variables, one ensures that the values in between and others potentially occurring around the boundaries are being considered for air change rates calculation, and therefore providing a more detailed picture of actual conditions.This work was financially supported by: Base Funding -UIDB/04708/2020 and Programmatic Funding - UIDP/04708/2020 of the CONSTRUCT -Instituto de I&D em Estruturas e Construcoes - funded by national funds through the FCT/MCTES (PIDDAC). The author would like to acknowledge the support of FCT - Fundacao para a Ciencia e a Tecnologia, the funding of the Doctoral Grant PD/BD/135162/2017, through the Doctoral Programme EcoCoRe.The authors also acknowledge Dr. Ricardo Deus and the Portuguese Institute for Sea and Atmosphere, I. P. (IPMA, IP) for providing the meteorological dataset for this work

    In-situ and laboratory airtightness tests of structural insulated panels (SIPs) assemblies

    Get PDF
    One of the main factors influencing building airtightness is the construction typology. As building environmental performance requirements raise so does the prevalence of less conventional envelope construction systems as modular structural insulated panels (SIPs) buildings. In this paper, the airtightness performance of a constructive solution based on SIPs was evaluated. Airtightness tests were performed on the laboratory according to the EN 12114-2000 methodology. One complete exterior wall assembly and another one with the inclusion of a window were tested to determine their performance as an effective air barrier. The impact of the window framing in the overall resistance to air leakage was also determined. Additionally, the airtightness of a dwelling using these SIPs was measured during the construction phase and after commissioning. The objective was not only the assessment of the ACH50 difference between the two stages, but also the comparison with  previously tested conventional envelopes on the same climate. Laboratory and field test data resulted in mismatching values. Workmanship and unforeseen leakage paths were found to be the main contributors to these findings. Moreover, the case study displayed a superior airtightness performance when compared to heavy type construction solutions, common amongst the Portuguese building stock. Additional work is needed to identify and quantify envelope airpaths in order to properly design lightweight buildings solutions. FCT-Fundação para a Ciência e a Tecnologia, the funding of the Doctoral Grant PD/BD/135162/2017, through the Doctoral Programme EcoCoRe. This paper is a result of the project “H0ME ZERO”, with the reference POCI -01-0247-FEDER-017840, co-funded by the European Regional Development Fund (ERDF), through the Operational Programme for Competitiveness and Internationalization (COMPETE 2020), under the PORTUGAL 2020 Partnership Agreement HOME This work was financially supported by : Project POCI-01-0145-FEDER-007457 -CONSTRUCT -Institute of R&D In Structures and Construction funded by FEDER funds through COMPETE 2020 -Programa Operacional Competitividade e Internacionalização POCI – and by national funds through - Fundação para a Ciência e a Tecnologiainfo:eu-repo/semantics/publishedVersio

    Two high-performance alternatives to ZLIB scientific-data compression

    Get PDF
    ZLIB is used in diverse frameworks by the scientific community, both to reduce disk storage and to alleviate pressure on I/O. As it becomes a bottleneck on multi-core systems, higher throughput alternatives must be considered, exploring parallelism and/or more effective compression schemes. This work provides a comparative study of the ZLIB, LZ4 and FPC compressors (serial and parallel implementations), focusing on CR, bandwidth and speedup. LZ4 provides very high throughput (decompressing over 1GB/s versus 120MB/s for ZLIB) but its CR suffers a degradation of 5-10%. FPC also provides higher throughputs than ZLIB, but the CR varies a lot with the data. ZLIB and LZ4 can achieve almost linear speedups for some datasets, while current implementation of parallel FPC provides little if any performance gain. For the ROOT dataset, LZ4 was found to provide higher CR, scalability and lower memory consumption than FPC, thus emerging as a better alternative to ZLIB.This work is funded by National Funds through the FCT Fundacao para a Ciencia e a Tecnologia (Portuguese Foundation for Science and Technology) within project PEst-OE/EEI/UI0752/2014, UT Austin - Portugal FCT grant SFRH/ BD/47840/2008, and the resources from the project SeARCH funded under contract CONC- REEQ/443/2005. We would also like to thank Nuno Castro and Rafael Silva for their contributions

    Reliability of quantitative and qualitative assessment of air leakage paths through reductive sealing

    Get PDF
    A full characterization of a building air leakage is labour intensive. As results of laboratory and mock-up experimentation rarely portray in situ conditions, the assessment of real case studies bring added value. Still, the results of experimentation of the latter face more challenges than the former. In this work a full quantitative and qualitative assessment of air leakage paths is performed, using a light steel framing (LSP) modular building with structural insulated panels (Sips) as case study. Blower-door measurements undergo for a sealing campaign of eleven steps, a technique often described as reductive sealing. Additionally, smoke tracer measurements were carried out to visually identify the air leakage locations. The application of three regression methods resulted in different uncertainty estimates. Less than 7% of the total air leakage was not attributed to one of the considered types of air leakage paths. Assessing less impacting leakage paths first and placing similar types of air leakage paths in a consecutive sealing order seems to be the most correct strategy when using the reductive sealing technique. On average, at a reference pressure difference of 4 Pa, the sealing step uncertainty averaged, 9.9%, 18.8%, and 27.5%, depending on the method used for regression of the blower door test results. Despite the highest calculated uncertainty, literature shows that the application of the method leading to it, Weighted Line of Organic Correlation (WLOC), provides the results in closer agreement with the observed uncertainty of measurements.- This work was financially supported by: Base Funding - UIDB/04708/2020 and Programmatic Funding - UIDP/04708/2020 of the CONSTRUCT-Instituto de 1&0 em Estruturas e Construcoes - funded by national funds through the FCT/MCTES (PIDDAC). The author would like to acknowledge the support of FCT - Fundacao para a Ciencia e a Tecnologia, the funding of the Doctoral Grant PD/BDIl35162/2017, through the Doctoral Programme EcoCoRe

    Ductility and durability of strain hardening cementitious composites in the marine environment

    Get PDF
    Modern structures are being exposed to severe environments and the lack of durability is one of the most serious problems in concrete infrastructures. Structural concrete exposed to marine environment deserves special attention as the sea salts chemically react with the cement matrix and the steel reinforcement which results in loss of strength, cracking, spalling, etc. The challenges of Civil Engineering, especially within the structures in extreme environments, pose considerable expectations with regards to the development of fibre reinforced materials for the development of more resistant and durable solutions. In the present work, the behaviour of an Engineered Cementitious Composite (ECC) was studied. All the specimens prepared were cured in 4 types of environments: exposed to air (20ºC of temperature and 60% of humidity) immersed in tap water, immersed in salted water and immersed in seawater, all at an average temperature of 18ºC. A series of experiments, including compressive and direct tension tests were carried out to characterize the mechanical properties of the ECC materials while exposed to different environments. The most important characteristic of ECC, which include multiple-cracking behaviour at increasing tensile strains when subjected to increasing tensile loading, was confirmed in all types of curing environments. In all cases the cementitious composites performed well with regards to the strain hardening behaviour typically observed in these materials, although the cracking processes have shown different characteristics. Due to the ability of the material to control crack opening below extremely low values, typically under 100 µm, the durability of structures can be significantly improved when ECC materials are used in the in marine environments. It was shown also that the salted water does not represent well the effect of seawater while characterising ECC mechanical characteristics in the laboratory.The authors acknowledge the material suppliers Secil, Civitest, Sika, Saint-Gobain (Fibraflex) and Eurocálcio – Calcários e Inertes SA for providing the materials used in this study

    A labelling strategy to define airtightness performance ranges of naturally ventilated dwellings: An application in southern Europe

    Get PDF
    Energy efficiency and indoor air quality are frequently-two conflicting objectives when establishing the air change rate (ACH) of a dwelling. In Europe, the northern countries have a clear focus on energy conservation, leading to an obvious awareness of the importance of airtightness, which translates into a high level of regulation and implementation. Meanwhile, the southern counterparts experience a more com-plex challenge by having predominantly passive ventilation strategies and milder climates, which often results in a more permissive approach. This work proposes an innovative labelling methodology to classify the performance of naturally ventilated dwellings. A representative sample of a southern European national built stock is used in a stochastic process to create a pool of 43,200 unique dwellings. The simulation period refers to a month of the typical heating season in the southern European mild conditions. The results test the labelling methodology. With feature selection, ACH limits, and a labelling strategy, dwellings classify according to their ability to provide adequate ACHs. The terrain was the best splitter of the dataset from the applied categorical variables. Regarding continuous variables, the airtightness was the one explaining most of the variability of the outputted ACHs, followed by the floor area. From the best performing dwellings labelled as compliant (Com), the average airtightness level was 5.3 h(-1), with 4.9 h(-1) and 5.8 h(-1) in rural and urban locations. (C) 2022 Elsevier B.V. All rights reserved.This work was financially supported by: Base Funding - UIDB/04708/2020 and Programmatic Funding - UIDP/04708/2020 of the CONSTRUCT - Instituto de I&D em Estruturas e Construcoes - funded by national funds through the FCT/MCTES (PIDDAC). The author would like to acknowledge the support of FCT - Fundacao para a Ciencia e a Tecnologia, the funding of the Doctoral Grant PD/BD/135162/2017, through the Doctoral Programme EcoCoRe. This work is supported by the European Social Fund (ESF), through the North Portugal Regional Operational Programme (Norte 2020) [Funding Reference: NORTE-06-3559-FSE-000176]. The authors also acknowledge Dr. Ricardo Deus and the Portuguese Institute for Sea and Atmosphere, I.P. (IPMA, IP) for providing the meteorological dataset for this work

    Towards an airtightness compliance tool based on machine learning models for naturally ventilated dwellings

    Get PDF
    Physical models and probabilistic applications often guide the study and characterization of natural phenomena in engineering. Such is the case of the study of air change rates (ACHs) in buildings for their complex mechanisms and high variability. It is not uncommon for the referred applications to be costly and impractical in both time and computation, resulting in the use of simplified methodologies and setups. The incorporation of airtightness limits to quantify adequate ACHs in national transpositions of the Energy Performance Building Directive (EPBD) exemplifies the issue. This research presents a roadmap for developing an alternative instrument, a compliance tool built with a Machine Learning (ML) framework, that overcomes some simplification issues regarding policy implementation while fulfilling practitioners' needs and general societal use. It relies on dwellings' terrain, geometric and airtightness characteristics, and meteorological data. Results from previous work on a region with a mild heating season in southern Europe apply in training and testing the proposed tool. The tool outputs numerical information on the air change rates performance of the building envelope, and a label, accordingly. On the test set, the best regressor showed mean absolute errors (MAE) below 1.02% for all the response variables, while the best classifier presented an average accuracy of 97.32%. These results are promising for the generalization of this methodology, with potential for application at regional, national, and European Union levels. The developed tool could be a complementary asset to energy certification programmes of either public or private initiatives. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).This work was financially supported by: Base Funding - UIDB/04708/2020 and Programmatic Funding - UIDP/04708/2020 of the CONSTRUCT - Instituto de I & D em Estruturas e Construcoes - funded by national funds through the FCT/MCTES (PIDDAC). The author would like to acknowledge the support of FCT - Fundacao para a Ciencia e a Tecnologia, the funding of the Doctoral Grant PD/BD/135162/2017, through the Doctoral Programme EcoCoRe. This work is supported by the European Social Fund (ESF), through the North Portugal Regional Operational Programme (Norte 2020) [Funding Reference: NORTE-06-3559-FSE-000176]

    Development and characterization of PHB-HV based 3D scaffolds for a tissue engineering and cell-therapy combinatorial approach for spinal cord Injury regeneration

    Get PDF
    Spinal cord injury (SCI) leads to devastating neurological deficits. Several tissue engineering (TE)- based approaches have been investigated for repairing this condition. Poly (3-hydroxybutyrateco- 3-hydroxyvalerate) (PHB-HV) is found to be particularly attractive for TE applications due to its properties, such as biodegradability, biocompatibility, thermoplasticity and piezoelectricity. Hence, this report addresses the development and characterization of PHB-HV-based 3D scaffolds, produced by freeze-drying, aimed to SCI treatment. The obtained scaffolds reveal an anisotropic morphology with a fully interconnected network of pores. In vitro studies demonstrate a lack of cytotoxic effect of PHB-HV scaffolds. Direct contact assays also reveal their ability to support the culture of CNS-derived cells and mesenchymal-like stem cells from different sources. Finally, histocompatibility studies show that PHB-HV scaffolds are well tolerated by the host tissue, and do not negatively impact the left hindlimb locomotor function recovery. Therefore results herein presented suggest that PHB-HV scaffolds may be suitable for SCI treatment.This study was supported by the Portuguese Foundation for Science and Technology (FCT; Grant no PTDC/SAU-BMA/114059/2009; PEst-C/SAU/LA0001/2013-2014 and RNEM-REDE/1506/REM/2005) and Foundation Calouste Gulbenkian, under the scope of the Gulbenkian Program to Support Cutting Edge Research in Life Sciences (A.J.S.). This work was also partially supported by the European FP7 Project Find and Bind (NMP4-SL-2009-229292). The authors would like to thank Miguel Carvalho, Fabio Teixeira, and Filipa Campos for their collaboration in in vivo experiments

    Year-round CO2 emissions from the drawdown area of a tropical reservoir: Strong seasonal and spatial variation

    Get PDF
    Highlights Drawdown areas emitted 80% of reservoir CO2 with just 1/5 area. Emissions from reservoir shorelines near forests were greater than from areas near grassland. CO2 emissions increase with the distance from the water. Estimates of reservoir drawdown CO2 flux vary by ∼ 300 % across the seasons examined here. There was no discernible difference in CO2 emissions between day and night-time. A significant increase in CO2 fluxes was observed 30 min after a rewetting event. Abstract A growing body of literature points to drawdown areas as important sources of atmospheric CO2 within reservoirs. Yet seasonal and temporal patterns of CO2 flux from periodically exposed sediments in drawdown areas remain poorly understood. Here we evaluate the annual and diel (24-hour cycle) variations in CO2 emissions from sediments periodically exposed to the atmosphere. We sampled sediments in the drawdown area of a tropical reservoir, which encompassed two primary adjacent land covers—grassland and forestland—in the watershed of a reservoir located in southeastern Brazil. We also experimentally assessed the effect of rewetting on CO2 emissions from exposed sediments. We found large variations in emissions during all hydrological periods (from 10 to 10116 mg C/m−2(−|-) d-1), except for the late rainy period. Land use and how distant dry sediments were from the open water significantly affected drawdown CO2 emissions, with higher emissions occurring in areas surrounded by forest than those adjacent to grassland. Our diel-cycle analysis did not show significant variation of emissions over daily cycles. Furthermore, a rewetting experiment indicated a significant increase in emissions 30 min after the onset of the rewetting event. Although drawdown areas only cover 20 % of the reservoir’s area, they account for 80 % of the reservoir’s total CO2 emissions. Ultimately, single-time measurements can lead to considerable underestimation (up to 52 %) or overestimation (up to 190 %) of whole-reservoir CO2 emissions

    OMICs approaches in diarrhetic shellfish toxins research

    Get PDF
    ReviewDiarrhetic shellfish toxins (DSTs) are among the most prevalent marine toxins in Europe’s and in other temperate coastal regions. These toxins are produced by several dinoflagellate species; however, the contamination of the marine trophic chain is often attributed to species of the genus Dinophysis. This group of toxins, constituted by okadaic acid (OA) and analogous molecules (dinophysistoxins, DTXs), are highly harmful to humans, causing severe poisoning symptoms caused by the ingestion of contaminated seafood. Knowledge on the mode of action and toxicology of OA and the chemical characterization and accumulation of DSTs in seafood species (bivalves, gastropods and crustaceans) has significantly contributed to understand the impacts of these toxins in humans. Considerable information is however missing, particularly at the molecular and metabolic levels involving toxin uptake, distribution, compartmentalization and biotransformation and the interaction of DSTs with aquatic organisms. Recent contributions to the knowledge of DSTs arise from transcriptomics and proteomics research. Indeed, OMICs constitute a research field dedicated to the systematic analysis on the organisms’ metabolisms. The methodologies used in OMICs are also highly e ective to identify critical metabolic pathways a ecting the physiology of the organisms. In this review, we analyze the main contributions provided so far by OMICs to DSTs research and discuss the prospects of OMICs with regard to the DSTs toxicology and the significance of these toxins to public health, food safety and aquacultureinfo:eu-repo/semantics/publishedVersio
    corecore