206 research outputs found

    The structure and occurrence of a velum in Utricularia traps (Lentibulariaceae)

    Get PDF
    PolandBladderworts (Utricularia, Lentibulariaceae, Lamiales) are carnivorous plants that form small suction traps (bladders) for catching invertebrates. The velum is a cuticle structure that is produced by specialized trichomes of the threshold pavement epithelium. It is believed that the velum together with the mucilage seals the free edge of the trap door and that it is necessary for correct functioning of the trap. However, recently, some authors have questioned the occurrence of a velum in the traps of the Utricularia from the various sections. The main aim of this study was to confirm whether velum occurs in the traps of the Utricularia species from the subgenera Polypompholyx, Bivalvaria, and Utricularia. The 15 species were examined from subg. Polypompholyx, subg. Bivalvaria, and subg. Utricularia. A velum was found in all examined Utricularia species. In the traps of the members of section Pleiochasia, there was an outer velum (forming a complete ring) and an inner velum. In the traps of Utricularia uniflora (Lasiocaules), there was only an inner velum. In these species, the formation of the velum was accompanied by intensive mucilage production, and as a result, when door was closed (set position), the mucilage and the velum touched the surface of the door. In members of both sections of Pleiochasia and Lasiocaules, the pavement epithelium had a more complicated structure (four to five zones) than in the members of the subgenera Bivalvaria and Utricularia in which three distinct zones occurred (an outer with a velum, a middle and an internal with the mucilage trichomes). Even in U. purpurea, where the threshold was a reduced pavement epithelium, it consisted of three functional zones and the presence of a velum. Two main types of velum have been proposed. A velum was present in Utricularia traps regardless of the trap type or the habitat (aquatic, epiphytic, and terrestrial species). We proposed broad definition of velum as cuticle membranes covered by mucilage; from a functional point of view, this definition is more useful and more reflects complexity of this structure

    Flower nectar trichome structure of carnivorous plants from the genus butterworts Pinguicula L. (Lentibulariaceae)

    Get PDF
    Pinguicula (Lentibulariaceae) is a genus comprising around 96 species of herbaceous, carnivorous plants, which are extremely diverse in flower size, colour and spur length and structure as well as pollination strategy. In Pinguicula, nectar is formed in the flower spur; however, there is a gap in the knowledge about the nectary trichome structure in this genus. Our aim was to compare the nectary trichome structure of various Pinguicula species in order to determine whether there are any differences among the species in this genus. The taxa that were sampled were Pinguicula moctezumae, P. moranensis, P. rectifolia, P. emarginata and P. esseriana. We used light microscopy, histochemistry, scanning and transmission electron microscopy to address those aims. We show a conservative nectary trichome structure and spur anatomy in various Mexican Pinguicula species. The gross structural similarities between the examined species were the spur anatomy, the occurrence of papillae, the architecture of the nectary trichomes and the ultrastructure characters of the trichome cells. However, there were some differences in the spur length, the size of spur trichomes, the occurrence of starch grains in the spur parenchyma and the occurrence of cellwall ingrowths in the terminal cells of the nectary trichomes. Similar nectary capitate trichomes, as are described here, were recorded in the spurs of species from other Lentibulariaceae genera. There are many ultrastructural similarities between the cells of nectary trichomes in Pinguicula and Utricularia

    Do food trichomes occur in Pinguicula (Lentibulariaceae) flowers?

    Get PDF
    • Background and Aims Floral food bodies (including edible trichomes) are a form of floral reward for pollinators. This type of nutritive reward has been recorded in several angiosperm families: Annonaceae, Araceae, Calycanthaceae, Eupomatiaceae, Himantandraceae, Nymphaeaceae, Orchidaceae, Pandanaceae and Winteraceae. Although these bodies are very diverse in their structure, their cells contain food material: starch grains, protein bodies or lipid droplets. In Pinguicula flowers, there are numerous multicellular clavate trichomes. Previous authors have proposed that these trichomes in the Pinguicula flower play the role of ‘futterhaare’ (‘feeding hairs’) and are eaten by pollinators. The main aim of this study was to investigate whether the floral non-glandular trichomes of Pinguicula contain food reserves and thus are a reward for pollinators. The trichomes from the Pinguicula groups, which differ in their taxonomy (species from the subgenera: Temnoceras, Pinguicula and Isoloba) as well as the types of their pollinators (butterflies/flies and bees/hummingbirds), were examined. Thus, it was determined whether there are any connections between the occurrence of food trichomes and phylogeny position or pollination biology. Additionally, we determined the phylogenetic history of edible trichomes and pollinator evolution in the Pinguicula species. • Methods The species that were sampled were: Pinguicula moctezumae, P. esseriana, P. moranensis, P. emarginata, P. rectifolia, P. mesophytica, P. hemiepiphytica, P. agnata, P. albida, P. ibarrae, P. martinezii, P. filifolia, P. gigantea, P. lusitanica, P. alpina and P. vulgaris. Light microscopy, histochemistry, and scanning and transmission electron microscopy were used to address our aims with a phylogenetic perspective based on matK/trnK DNA sequences. • Key Results No accumulation of protein bodies or lipid droplets was recorded in the floral non-glandular trichomes of any of the analysed species. Starch grains occurred in the cells of the trichomes of the bee-/fly-pollinated species: P. agnata, P. albida, P. ibarrae, P. martinezii, P. filifolia and P. gigantea, but not in P. alpina or P. vulgaris. Moreover, starch grains were not recorded in the cells of the trichomes of the Pinguicula species that have long spurs, which are pollinated by Lepidoptera (P. moctezumae, P. esseriana, P. moranensis, P. emarginata and P. rectifolia) or birds (P. mesophytica and P. hemiepihytica), or in species with a small and whitish corolla that selfpollinate (P. lusitanica). The results on the occurrence of edible trichomes and pollinator syndromes were mapped onto a phylogenetic reconstruction of the genus. • Conclusion Floral non-glandular trichomes play the role of edible trichomes in some Pinguicula species (P. agnata, P. albida, P. ibarrae, P. martinezii, P. filifolia and P. gigantea), which are mainly classified as bee-pollinated species that had originated from Central and South America. It seems that in the Pinguicula that are pollinated by other pollinator groups (Lepidoptera and hummingbirds), the non-glandular trichomes in the flowers play a role other than that of a floral reward for their pollinators. Edible trichomes are symplesiomorphic for the Pinguicula species, and thus do not support a monophyletic group such as a synapomorphy. Nevertheless, edible trichomes are derived and are possibly a specialization for fly and bee pollinators by acting as a food reward for these visitors

    The Trap Architecture of Utricularia multifida and Utricularia westonii (subg. Polypompholyx)

    Get PDF
    Utricularia are carnivorous plants which have small hollow vesicles as suction traps that work underwater by means of negative pressure and watertightness of the entrance for capturing small animal prey. Utricularia multifida and U. westonii have specific thick-walled traps, which are triangular in a transverse section but their functioning is unclear. Some authors suggest that the trap door in U. multifida acts as a simple valve without a suction trapping mechanism. Our main aim was to check the anatomical trap characters that are responsible for possible water outflow and maintaining negative pressure as main functional parts of the active trap suction mechanism in both species. Using different microscopic techniques, we investigated the ultrastructure of external trap glands, quadrifids, glands near the entrance (bifids, monofids), and also pavement epithelium. Quadrifids of both species have a similar structure to those known in other species from the genus, which possess the suction trap mechanism. Glands near the entrance in U. multifida and U. westonii, which are responsible for water pumping in other species, are typically developed as in other species in the genus and have pedestal cells which are transfer cells. The transfer cells also occur in glands of the pavement epithelium, which is again typically developed as in other species in the genus. Simple biophysical tests did not confirm reliably neither the negative underpressure formation in the traps nor the watertightness of the entrance in both species. Our anatomical results indirectly support the hypothesis that both species have suction traps like all other Utricularia species, but the biophysical data rather suggest a passive valve mechanism

    Life in the Current: Anatomy and Morphology of Utricularia neottioides

    Get PDF
    Rheophytism is extremely rare in the Utricularia genus (there are four strictly rheophytic species out of a total of about 260). Utricularia neottioides is an aquatic rheophytic species exclusively growing attached to bedrocks in the South American streams. Utricularia neottioides was considered to be trap-free by some authors, suggesting that it had given up carnivory due to its specific habitat. Our aim was to compare the anatomy of rheophytic U. neottioides with an aquatic Utricularia species with a typical linear monomorphic shoot fromthe section Utricularia, U. reflexa, which grows in standing or very slowly streaming African waters. Additionally, we compared the immunodetection of cell wall components of both species. Light microscopy, histochemistry, scanning, and transmission electron microscopy were used to address our aims. In U. neottioides, two organ systems can be distinguished: organs (stolons, inflorescence stalk) which possess sclerenchyma and are thus resistant to water currents, and organs without sclerenchyma (leaf-like shoots), which are submissive to the water streaming/movement. Due to life in the turbulent habitat, U. neottioides evolved specific characters including an anchor system with stolons, which have asymmetric structures, sclerenchyma and they form adhesive trichomes on the ventral side. This anchor stolon system performs additional multiple functions including photosynthesis, nutrient storage, vegetative reproduction. In contrast with typical aquatic Utricularia species from the section Utricularia growing in standing waters, U. neottioides stems have a well-developed sclerenchyma system lacking large gas spaces. Plants produce numerous traps, so they should still be treated as a fully carnivorous plant

    Spatio-temporal distribution of cell wall components in the placentas, ovules and female gametophytes of Utricularia during pollination

    Get PDF
    In most angiosperms, the female gametophyte is hidden in the mother tissues and the pollen tube enters the ovule via a micropylar canal. The mother tissues play an essential role in the pollen tube guidance. However, in Utricularia, the female gametophyte surpasses the entire micropylar canal and extends beyond the limit of the integument. The female gametophyte then invades the placenta and a part of the central cell has direct contact with the ovary chamber. To date, information about the role of the placenta and integument in pollen tube guidance in Utricularia, which have extra-ovular female gametophytes, has been lacking. The aim of this study was to evaluate the role of the placenta, central cell and integument in pollen tube pollen tube guidance in Utricularia nelumbifolia Gardner and Utricularia humboldtii R.H. Schomb. by studying the production of arabinogalactan proteins. It was also determined whether the production of the arabinogalactan proteins is dependent on pollination in Utricularia. In both of the examined species, arabinogalactan proteins (AGPs) were observed in the placenta (epidermis and nutritive tissue), ovule (integument, chalaza), and female gametophyte of both pollinated and unpollinated flowers, which means that the production of AGPs is independent of pollination; however, the production of some AGPs was lower after fertilization. There were some differences in the production of AGPs between the examined species. The occurrence of AGPs in the placental epidermis and nutritive tissue suggests that they function as an obturator. The production of some AGPs in the ovular tissues (nucellus, integument) was independent of the presence of a mature embryo sac

    Phylogeny of the "orchid-like" bladderworts (gen. Utricularia sect. Orchidioides and Iperua : Lentibulariaceae) with remarks on the stolon-tuber system

    Get PDF
    Background and Aims The "orchid-like" bladderworts (Utricularia) comprise 15 species separated into two sections: Orchidioides and Iperua. These robust and mostly epiphytic species were originally grouped within the section Orchidioides by the first taxonomical systems. These species were later split into two sections when sect. Iperua was proposed. Due to the lack of strong evidence based on a robust phylogenetic perspective, this study presents a phylogenetic proposal based on four different DNA sequences (plastid and nuclear) and morphology to test the monophyly of the two sections. Methods In comparison with all previous phylogenetic studies, the largest number of species across the sections was covered: 11 species from sections Orchidioides and Iperua with 14 species as an external group. Maximum likelihood and Bayesian inferences were applied to DNA sequences of rps16, trnL-F, matK, the internal transcribed spacer (ITS) and three morphological characters: (1) the crest of the corolla; (2) the primary organs in the embryo; and (3) tubers. Additionally, a histochemical analysis of the stolons and tubers is presented from an evolutionary perspective. Key Results The analyses showed the paraphyly of sect. Iperua, since Utricularia humboldtii is more related to the clade of sect. Orchidioides. Utricularia cornigera is grouped in the sect. Iperua clade based on chloroplast DNA sequences, but it is nested to sect. Orchidioides according to ITS dataset. Morphological characters do not support the breaking up of the 'orchid-like' species into two sections, either. Moreover, the stolon-tuber systems of both sections serve exclusively for water storage, according to histological analyses. Conclusions This study provides strong evidence, based on DNA sequences from two genomic compartments (plastid and nucleus) and morphology to group the Utricularia sect. Orchidioides into the sect. Iperua. The tubers are important adaptations for water storage and have been derived from stolons at least twice in the phylogenetic history of 'orchid-like' bladderworts

    Living between land and water – structural and functional adaptations in vegetative organs of bladderworts

    Get PDF
    Aims: The carnivorous Utricularia (Lentibulariaceae) has an anatomically simple and seemingly rootless vegetative body. It occupies a variety of wetlands and inland waters and shows a broad range of life forms. Here, we aimed to elucidate structural and functional traits in various hydric conditions. Furthermore, we intended to evaluate morpho-anatomical adaptations in correlation with life forms. Methods: Morpho-anatomical characteristics typical for hydrophytes of all life forms were investigated by light microscopy on 13 Utricularia taxa, compared to one Pinguicula and two Genlisea taxa, and assessed by multivariate analyses. Results: Vegetative structures of Utricularia and Genlisea showed reduced cortical, supporting, and vascular tissues. With increasing water table, leaves were thinner, and narrower or dissected, and submerged organs tended to contain chloroplasts in parenchymatic and epidermal cells. In some main stolons, an endodermis with Casparian strips was visible. Large gas chambers, including a novel ‘crescent’ and a special ‘hollow’ aerenchyma pattern, were found in amphibious to free-floating taxa. Conclusions: The evolutionary transfer of carnivory from aerial to subterranean organs in Genlisea, and even more in Utricularia, coincides with a highly simplified anatomy, which is adapted to a broad variety of hydric conditions and compensates for structural innovations in the uptake of nutrients

    A Historical Perspective of Bladderworts (Utricularia): Traps, Carnivory and Body Architecture

    Full text link
    The genus Utricularia includes around 250 species of carnivorous plants, commonly known as bladderworts. The generic name Utricularia was coined by Carolus Linnaeus in reference to the carnivorous organs (Utriculus in Latin) present in all species of the genus. Since the formal proposition by Linnaeus, many species of Utricularia were described, but only scarce information about the biology for most species is known. All Utricularia species are herbs with vegetative organs that do not follow traditional models of morphological classification. Since the formal description of Utricularia in the 18th century, the trap function has intrigued naturalists. Historically, the traps were regarded as floating organs, a common hypothesis that was maintained by different botanists. However, Charles Darwin was most likely the first naturalist to refute this idea, since even with the removal of all traps, the plants continued to float. More recently, due mainly to methodological advances, detailed studies on the trap function and mechanisms could be investigated. This review shows a historical perspective on Utricularia studies which focuses on the traps and body organization
    • …
    corecore