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Abstract

Pinguicula (Lentibulariaceae) is a genus comprising around 96 species of herbaceous, carnivorous plants, which are extremely
diverse in flower size, colour and spur length and structure as well as pollination strategy. In Pinguicula, nectar is formed in the
flower spur; however, there is a gap in the knowledge about the nectary trichome structure in this genus. Our aim was to compare
the nectary trichome structure of various Pinguicula species in order to determine whether there are any differences among the
species in this genus. The taxa that were sampled were Pinguicula moctezumae, P. moranensis, P. rectifolia, P. emarginata and
P esseriana. We used light microscopy, histochemistry, scanning and transmission electron microscopy to address those aims.
We show a conservative nectary trichome structure and spur anatomy in various Mexican Pinguicula species. The gross structural
similarities between the examined species were the spur anatomy, the occurrence of papillae, the architecture of the nectary
trichomes and the ultrastructure characters of the trichome cells. However, there were some differences in the spur length, the size
of spur trichomes, the occurrence of starch grains in the spur parenchyma and the occurrence of cell wall ingrowths in the terminal
cells of the nectary trichomes. Similar nectary capitate trichomes, as are described here, were recorded in the spurs of species from
other Lentibulariaceae genera. There are many ultrastructural similarities between the cells of nectary trichomes in Pinguicula
and Utricularia.

Keywords Butterworts - Carnivorous plant - Floral micromorphology - Lentibulariaceae - Nectary structure - Pinguicula - Spur -
Trichomes

Introduction about 360 species. This family consists of three genera of

carnivorous plants: Pinguicula L., Genlisea A. St.-Hil. and
Lentibulariaceae L. is a monophyletic family within the  Utricularia L. (e.g. Juniper et al. 1989; Jobson et al. 2003;
Lamiales (APG IV 2016; Schiferhoff et al. 2010) and contains ~ Miiller et al. 2004; Fleischmann and Roccia 2018). The family
Lentibulariaceae probably originated about 42 million years
ago (Ibarra-Laclette et al. 2013; Silva et al. 2018). Most prob-
ably, the genus Pinguicula originated in South America. It is
Electronic supplementary material The online version of this article the second largest genus of this family and contains about 96
(https://doi.org/10.1007/500709-019-01433-8) contains supplementary currently recognised species. Pinguicula species occur on all
material, which is available to authorized users. . . o - .

of the continents except for Australia, with its centre of diver-
54 Bartosz J. Plachno sity in Central America (Casper 1966; Beck et al. 2008;
bartoszplachno@uj.edu.pl Roccia et al. 2016; Fleischmann and Roccia 2018).

Although all Lentibulariaceae genera contain plants that are
Department of Plant Cytology and Embryology, Institute of Botany, carnivorous herbs, they use the different strategies for captur-
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Departamento de Biologia Aplicada a Agropecuaria, Universidade 2007, 2019a; Poppinga et al. 2016). Pinguicula species are

Estadual Paulista (Unesp), Faculdade de Ciéncias Agrarias e . , . .
Veterindrias, Jaboticabal, Sio Paulo, Brazil active ‘flypapers’ that have a basal rosette of slightly modified
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leaves for trapping small invertebrates. Pinguicula leaves
have two types of epidermal glandular trichomes (stalked
and sessile) on their upper surfaces. Stalked trichomes carry
mucilaginous droplets for trapping prey, which the sessile tri-
chomes produce digestive enzymes and absorb the nutrients
from digested prey (e.g. Heslop-Harrison 1970; Heslop-
Harrison and Heslop-Harrison 1980; Legendre 2000;
Adlassnig et al. 2010). Some species, e.g. P. gigantea and
P, longifolia, also have mucilage trichomes on their lower leaf
surface (Fleischmann and Roccia 2018). Their natural prey is
mainly small flying Diptera (Nematocera) and other insects
(Coleoptera, Thysanoptera, Lepidoptera) as well as springtails
(Collembola), mites, spiders and gastropods (e.g. Karlsson
et al. 1987; Zamora 1990, 1999; Heslop-Harrison 2004;
Adler and Malmgqvist 2004; Alcala and Dominguez 2003,
2005; Darnowski et al. 2018).

Members of Lentibulariaceae have zygomorphic
flowers that have a sympetalous corolla that is bilobed.
The upper lip is formed by two and the lower lip by three
fused petals. In all three genera, there are flower spurs,
which are tubular outgrowths of the perianth organs and
contain nectar for their pollinators (Casper 1966; Taylor
1989; Fischer et al. 2004; Fleischmann et al. 2010;
Aranguren et al. 2018; Ptachno et al. 2017, 2018, 2019b,
¢). In Pinguicula, the corolla is throat-like and its shape is
either distinctly zygomorphic (Fig. 1a—1) with the lower lip
spreading widely from the upper lip or nearly isolobous
and radial (Fleischmann and Roccia 2018). The flowers
vary in their sizes, colours (from red, violet, pink, blue to
white) and spur size and shape (Fig. la—1; see Casper 1966;
Roccia et al. 2016; Lampard et al. 2016).

Pinguicula species are extremely diverse in their polli-
nation strategies. Schnell (1976) proposed that the tubular
Pinguicula flowers are pollinated by long-tongued insects.
Hymenoptera (bumblebees, carpenter bees, honeybees and
other smaller bees) are the primary flower visitors in the
Pinguicula species in the south-eastern USA: Pinguicula
ionantha, P. lutea and P. planifolia (Molano-Flores et al.
2018). The flowers of the Mediterranean P. vallisneriifolia
have specialised floral traits (large, spurred flowers, con-
trasting colours, floral guides and the presence of nectar),
which suggest a bee type of flower. Although
P. vallisneriifolia flowers are visited by hymenoptera,
thrips (Thripsmeridionalis) and small beetles
(Eusphalerumscribae) are the primary pollen vectors for
this species (Zamora 1999). Thus, despite their specialised
floral traits for bee pollination syndrome, the main polli-
nators belong to other groups (Zamora 1999). According
to Heslop-Harrison (2004), the flowers of P vulgaris are
primarily bee pollinated. The flowers of P. alpina are
adapted for insect pollination mainly by flies but also by
bees (Molau 1993; Heslop-Harrison 2004). In Gotland,
P. alpina flowers were visited by both flies and bees:
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Melanostomascalare, Platycheirusalbimanus,
Lasioglossumfratellum, Lasioglossumalbipes,
Dasysyrphus and members of Empididae and
Anthomyiidae (Nordin 2015). According to this author,
short-tongued insects can also pollinate this species be-
cause both the throat and spur in P. alpina flowers are
wide, which enables penetration. The Mexican
Pinguicula species (P. moranensis), which produce large,
coloured, hercogamous flowers that have long spurs, are
pollinated by Lepidoptera (Zamudio 2001; Villegas and
Alcala 2018, see Fig. 5 in Villegas and Alcald 2018,
which presents a beautiful “Schematic representation of
pollination in Pinguicula moranensis”). According to
Abrahamczyk et al. (2017), Pinguicula macrophylla and
P moctezumaeare are also pollinated by Lepidoptera.
Pinguicula hemiepiphytica and the related Pinguicula
laueana have purple-red or red flowers that have long
spurs and are visited by hummingbirds and, most proba-
bly, are pollinated by them (Lampard et al. 2016); how-
ever, this should be verified because no Pinguicula pollen
grains have been observed on the bodies of
hummingbirds.

Only a few species have been studied to determine the
occurrence of nectar in Pinguicula flowers. Zamora
(1999) noted that P. vallisneriifolia only produces traces
of nectar. Abrahamczyk et al. (2017) showed that the nec-
tar sugar composition varies in the species that are polli-
nated by different groups of insects, e.g. species that are
pollinated by butterflies (P. macrophylla and
P. moctezumae) had fructose-dominated nectar, while spe-
cies that are classified as being pollinated by bees and
wasps had sucrose-dominated nectar (P. gigantea) or
hexose-dominated nectar (P. leptoceras). P. alpina, which
was classified by Abrahamczyk et al. (2017) as fly-
pollinated species, also had sucrose-dominated nectar.
However, this species is also pollinated by bees (Molau
1993).

In Utricularia, the spur is treated as a nectary and nectar is
produced by small glandular trichomes (Ptachno et al. 2017,
2018, 2019b, c). The ultrastructure of these trichomes was
analysed by Ptachno et al. (2017, 2019c). Moreover, the small
spur trichomes in Genlisea also produce nectar (Fleischmann
2012; Aranguren et al. 2018). However, it is important to note
that there is a gap in our knowledge about the nectary trichome
structure in Pinguicula. Such data will be very useful in the
future in order to create an ancestral state reconstruction and
phylogenetic hypothesis of the pollination syndrome in
Lentibulariaceae. Therefore, our aim was to compare the nec-
tary trichome structure of various Pinguicula species in order
to determine whether there are any differences among species
in the genus. In case of P. moranensis, we used a typical
flowered plant as well as the white-flowered form to deter-
mine whether there are any differences between these forms.
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Fig. 1 General floral morphology of the examined Pinguicula species; note the presence of spurs (arrow). a, b P. moctezumae. ¢, d P, rectifolia. e, f

P, esseriana. g, h P. emarginata. i, 1 P. moranensis

Material and methods
Plant material

The plant material (Pinguicula moctezumae Zamudio & R. Z.
Ortega, P. moranensis H. B. K., P. rectifolia Speta & Fuchs,
P. emarginata Zamudio Ruiz & Rzedowski and P. esseriana
B. Kirchner; Fig. 1a—1) was bought from the Best Carnivorous
Plants Store (KamilPasek, Ostrava, Czech Republic). The
plants were later cultivated in the Botanical Garden of the
Jagiellonian University in Krakéw. For each species, mini-
mum ten flowers (at middle stage of the anthesis) from ten
individual plants were collected and studied. All studied
flowers were at the same, comparable stage. The length of
the spurs of investigated species was Pinguicula moctezumae
(25) 28-35 (38) mm; P. moranensis (18) 25-35 (44) mm:;

P, rectifolia about 30 mm; P. emarginata about 7 mm and
P, esseriana (10) 15-20 (30) mm (Roccia et al. 2016; http:/
www.pinguicula.org/pages/pages_principales/content.html).

Methods

The flower spurs were examined using light microscopy
(LM), scanning electron microscopy (SEM) and transmission
electron microscopy (TEM) as follows. Small fragments of
the apical part of the spurs were fixed in a mixture of 2.5%
or 5% glutaraldehyde with 2.5% formaldehyde in a 0.05-M
cacodylate buffer (Sigma; pH 7.2) overnight or for several
days, washed three times in a 0.1-M sodium cacodylate buffer
and post-fixed in a 1% osmium tetroxide solution at room
temperature for 1.5 h. Dehydration using a graded ethanol

@ Springer
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Table 1 Measurements [average trichome length and head diameter (um + SD)] of the nectary Pinguicula trichomes (n =20 for each species)
Species P. moctezumae P. esseriana P. emarginata P. moranensis P, rectifolia
Trichome length (pm) 34.41 +3.94 45.36 +3.70 32.74 +3.14 42.41 £6.22 3249 +2.31
Head diameter (um) 26.96 + 1.83 32.50 + 1.74 22.42 + 1.84 31.20 £ 2.74 24.84 £ 1.49

series, infiltration and embedding using an epoxy embedding
medium kit (Fluka) followed. After polymerisation at 60 °C,
sections for the TEM were cut at 70 nm using a Leica Ultracut
UCT ultramicrotome, stained with uranyl acetate and lead
citrate (Reynolds 1963) and examined using a Hitachi H500
transmission electron microscope (Hitachi, Tokyo, Japan),
which is housed in the University of Silesia in Katowice, at
an accelerating voltage of 75 kV. The semi-thin sections (0.9—
1.0 pm thick) that were prepared for the LM were stained with
aqueous methylene blue/azure 11 (MB/AII) for 1-2 min
(Humphrey and Pittman 1974) and examined using an

Fig. 2 General anatomy of the
examined Pinguicula spurs; Part
of the sections through the spurs
showing the inner epidermis (ie),
external epidermis (ee),
parenchyma (P), vascular bundles
(Vb), outer glandular trichome
(star) and nectary trichomes (ar-
row). a, b P. moctezumae; scale
bar respectively = 100 pm and
50 um. ¢ P. rectifolia; scale bar =
50 um. d P, esseriana; scale bar =
50 um. e P. emarginata; scale
bar =50 um. f P. moranensis;
scale bar =50 um

@ Springer

Olympus BX60 light microscope for the general histology.
The periodic acid-Schiff (PAS) reaction for the LM (semi-
thin sections) was also used to reveal the presence of insoluble
polysaccharides and Sudan Black B was used to detect the
presence of lipids and cuticle material (Jensen 1962).
Additionally, material that was embedded in Technovit
7100 (Kulzer, Germany) was also observed. The material
was fixed in a mixture of 2.5% or 5% glutaraldehyde with
2.5% formaldehyde in a 0.05-M cacodylate buffer (Sigma;
pH 7.2) overnight, washed three times in a 0.1-M sodium
cacodylate buffer, dehydrated in a graded ethanol series for

Nk
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Fig. 3 PAS reaction and Lugol’s
staining of the examined
Pinguicula spurs; note the
presence of starch grains (arrow)
around the vascular bundle (star),
which contains the xylem (X) and
phloem (Ph). a P. moctezumae,
scale bar =50 um. b

P. moranensis, scale bar =10 pm.
¢ P. moctezumae, scale bar =

100 um. d P. rectifolia, scale
bar=100 pm

15 min at each concentration and kept overnight in absolute
ethanol. Later, the samples were infiltrated for 1 h each in 3:1,
1:1 and 1:3 (v/v) mixtures of absolute ethanol and Technovit
and then stored for 12 h in pure Technovit. The resin was

Fig. 4 Micromorphology and
anatomy of a glandular trichome
located on the outer surface of a
P. moranensis spur. a, b
Micromorphology of the interior
(S) and outer glandular trichomes
of the spur (arrow); scale bar =
500 um and 100 pm, respective-
ly. ¢ Autofluorescence of the outer
trichome cell wall; note the bright
fluorescence showing the cell
wall of the pedestal cell that is
heavily impregnated with cutin
(arrowhead); scale bar = 50 um. d
General morphology of an outer
trichome with a secretion droplet
(star) on the top; scale bar =

50 um. e Anatomy of an outer
trichome showing the basal cell
(Bc), stalk cell (Sc) and trichome
head (H); scale bar=10 um

polymerised by adding a hardener. The material was sectioned
to 5 um thick using a rotary microtome (Microm,
AdamasInstrumenten), stained with 0.1% toluidine blue O
(TBO) and mounted in Entellan synthetic resin (Merck).

@ Springer
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Fig.5 Structure of the Pinguicula
papillae. a, b Micromorphology
of P. esseriana and

P. moctezumae papillae,
respectively; note the papillae (P)
with an almost smooth cuticular
surface (a) and cuticular striations
(b). These striations were also
observed on cuticular surface of
glandular trichome stalk cell (Sc);
scale bar =20 um and 40 pm. ¢,
d, respectively. Ultrastructure of
P. moctezumae papillae; note the
paracrystalline protein inclusion
(Pi) in the nucleus (N), the cell
wall (Cw) polysaccharide fibril-
lary network in the cuticle layer
(arrow), lipid droplets (L) with
mitochondria (M) in the cyto-
plasm and huge vacuoles (V);
scale bar=0.5 um and 0.8 pm,
respectively

Living, non-fixed spurs were cut using a razor blade and
observed under UV light using a Nikon Eclipse E400 micro-
scope to determine any autofluorescence of the cuticle. In
order to identify the main classes of the chemical compounds
that are present in the spur tissues, histochemical procedures
with the spurs of fresh or fixed flowers using Sudan III, Sudan
Black B and Lugol’s solution were performed to detect the
total lipids, starch grains and proteins (Johansen 1940),
respectively.

For the SEM, the spur traps were fixed (as above) and later
dehydrated and critical point dried using CO,. They were then
sputter-coated with gold and examined at an accelerating volt-
age of 20 kV using a Hitachi S-4700 scanning electron micro-
scope, which is housed in the Institute of Geological Sciences,
Jagiellonian University in Krakow, Poland.

Statistical analysis

We measured the trichomes length and trichomes head diam-
eter for each species (Table 1). The numbers of flowers used
for measurements were three for P. moranensis, P.
moctezumae, P. rectifolia and two for P. esseriana, P.
emarginata. Each variable was tested using the Shapiro-

@ Springer

Wilk W-test for normality. The homogeneity of variance was
assessed with Levene’s test. Statistical differences in tri-
chomes length, as well as trichomes head diameter between
each Pinguicula species, were assessed using the Kruskal-
Wallis nonparametric one-way ANOVA, followed by multiple
comparison of average ranks for all trials test. Statistical anal-
yses were performed on raw data using Statistic 13 software
(StatSoft Inc.). Data from measurements of trichomes length
and head diameter were expressed in pm as mean + SD. Data
were considered statistically significant at **p <0.01 and
##%p < 0.001.

Results

Any similar results for the five studied Pinguicula species
were grouped and are presented together and the differences
between them were highlighted in the text. We did not find the
differences in the structure of flowers between typical and
white-flowered forms of P moranensis. The general anatomy
of the spur was the same across the investigated species. In a
transverse section, the wall of the spur was composed of sev-
eral cell layers: the internal epidermis, layers of parenchyma
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Fig. 6 Morphology and anatomy
of the examined Pinguicula
stomata; note the guard cells (star)
of the stoma with starch grains,
the stoma pore (arrow), the air
space below stoma (As) and a
glandular trichome (T). a, b
Morphology of P. rectifolia and
P. moranensis stoma; scale bar = y
10 wm and 25 pm, respectively. ¢, .
d PAS reaction of the P. esseriana

and P. moranensis stoma; scale
bar=10 pm and 50 pm, respec-
tively. e, f Micromorphology of
the P, rectifolia stoma; scale bar =
50 um and 30 pum, respectively

cells and the outer epidermis (Fig. 2a—f). The parenchyma
cells were non-glandular. There were from three to eight
layers of parenchyma and the number of layers depended on
the species (for example, three to four in P. emarinata and four
to eight in P. moctezumae). The collateral vascular bundles,
each of which contained both a xylem and phloem, occurred
in the ground parenchyma (Fig. 2a—f, Fig. 3a, b). The paren-
chyma cells of P. moctezumae, P. emarginata and P. rectifolia,
which surround the vascular bundles, contained amyloplasts
with large starch grains (Fig. 3a, d). In P. moctezumae, starch
grains also occurred in the other parenchyma cells (Fig. 3¢). In
P esseriana, the occurrence of starch grains depended on the
flowers. Both the external and internal epidermis of the spur
had capitate glandular trichomes (Fig. 4a). In all of the exam-
ined species, there were long-stalked glandular trichomes at
the external spur surface (Fig. 4b—e). Each of this type of
trichome consisted of a single basal cell, stalk cells (up to
four—P. moranensis, which mostly occurred in one or two
cells), a pedestal cell and a multi-celled head (Fig. 4e). The
number of head cells varied in the species (up to 16 cells). The
pedestal cell was a barrier cell with lateral walls impregnated

with cutin. The head cells were glandular and produced drop-
lets of secretion (Fig. 4d).

The inner epidermis formed short unicellular papillae that
had an almost smooth surface (P. esseriana, Fig. 5a) or papil-
lae with delicate striations (Fig. 5b). The papillae were highly
vacuolated not glandular. The nuclei of the papillaec had a
paracrystalline protein inclusion (Fig. Sc). The papillae also
had a thick cuticle. A polysaccharide fibrillary network of
electron-dense ramification occurred in the cuticle layer (Fig.
5d). Stomata were observed in the inner epidermis of the spur
(Fig. 6a—f). The stoma cells contained starch grains (Fig. 6a—
d). Sometimes, the stomata were elevated above the surface of
the epidermis (Fig. 6d).

The trichomes of the nectary spur (Fig. 7a—0) were com-
posed of a single basal cell, a stalk cell, a pedestal cell (barrier
cell) and a multi-celled head (from four to eight cells) (Fig. 7c,
e; Fig. 8a—). In P moctezumae, some trichomes were sessile
and there was no stalk cell (Fig. 7a). Both the basal cell and
stalk cell were highly vacuolated (Fig. 9a, b). The length and
diameter of the trichome heads are listed in Table 1.
Measurements of glandular trichomes length and trichomes

@ Springer
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Fig. 7 Micromorphology and autofluorescence of the glandular
trichomes of the examined Pinguicula species; note the stalk cell (Sc),
trichome head (H) and bright fluorescence showing the cell wall (arrow)
of pedestal cell that is heavily impregnated with cutin (star). a—c
P. moctezumae, scale bar=50 pm, 20 pm, 10 pm, respectively. d—f
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P. esseriana, scale bar=100 pm, 50 pum, 10 um, respectively. g—i
P emarginata, scale bar=50 pm, 20 pm, 10 pm, respectively. j—I
P. moranensis, scale bar=100 pm, 20 um, 10 um, respectively. m—o
P, rectifolia, scale bar =50 pm, 50 pm, 10 pm, respectively
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Fig. 8 Anatomy of the glandular trichomes of the examined Pinguicula
species. a P moctezumae; Part of a section through the glandular trichome
showing the basal cell (Bc), stalk cell (Sc), pedestal cell (star), head cell

head diameter revealed that the longest trichomes with widest
trichomes head inside spur occurred in P. esseriana and
P. moranensis. Analyses of trichomes length show the signif-
icant differences occurred in P. esseriana and P. moranensis
comparing with P. moctezumae, P. rectifolia and
P emarginata (***p <0.001) [supplementary Material]. We
also observed marked differences in the trichomes head diam-
eter between P, esseriana and P. moranensis comparing with
P moctezumae (**p <0.01), P. rectifolia and P. emarginata
(***p <0.001) [supplementary Material]. P moctezumae had
wider trichomes head comparing with P. emarginata
(**p<0.01).

The outer wall of the basal cell developed a cuticle. The
lateral wall of the stalk cell developed a distinct cuticle cell
wall layer (Fig. 9c). The pedestal cell had a thick radial
(lateral) wall, which was heavily impregnated with cutin
(Fig. 9d). In the radial cell wall, two layers were distinguished
(there were differences in the cell impregnation). The inner
surface of the radial cell wall had an undulating surface (Fig.
9d, e and g). The impregnation with cutin also occurred in a
fragment of the transverse walls between the stalk cell and the
pedestal cell (Fig. 9¢) as well as in the fragments of the cell
walls between the pedestal cell and the head cells (Fig. 9f).
However, the transverse walls were thinner than the radial cell
wall and electron dense. Plasmodesmata occurred in the trans-
verse walls between the stalk cell and the pedestal cell (Fig.
9e) as well as in the transverse walls between the pedestal cell
and the terminal cells (Fig. 9g). The nucleus of the pedestal
cell was prominent (Fig. 9d). The cytoplasm contained many
mitochondria (Fig. 9d, ¢ and g) and profiles of the rough
endoplasmic reticulum. Plastids and microbodies were also
observed. The vacuoles formed a reticulate network (Fig.
9e). One of the most prominent features of the pedestal cell
was the presence of lipid bodies (Fig. 9e—g). In the pedestal
cells, there was a large accumulation of lipid bodies that were
almost equal in size (Fig. 9f), whereas in others, there was one

(Hc) and cuticle separating from the cell wall (arrow); scale bar =5 pm. b
P. moranensis; scale bar=5 pum. ¢ P. emarginata; scale bar=5 pm

large lipid body and a few very small ones (Fig. 9g). This,
could be connected with fusing of lipid bodies.

The head cells had a dense cytoplasm (Fig. 10a) with
prominent nuclei with a paracrystalline protein inclusion
(Fig. 10a and Fig. 11a). The cuticle became distended
and separated from the cell walls and formed a subcuticular
space at top part of the head (Fig. 10b). There was a poly-
saccharide fibrillary network of electron-dense ramifica-
tion in the cuticle layer (Fig. 10b). Mitochondria were very
numerous with well-developed cristae as view on the trans-
versal section (Fig. 10c—f) and sometimes, they were cup-
shaped (Fig. 10c). Plastids were numerous and were oval-,
dumbbell- or cup-shaped as view on the transversal section
(Fig. 10d, e and Fig. 11c). They had small starch grains
(P. moctezumae, P. moranensis, P. rectifolia; (Fig. 10d))
and electron-dense inclusions (P. emarginata). The cyto-
plasm contained small lipid bodies, small dictyosomes
(Fig. 10d—f) and microbodies (Fig. 11a). The vacuoles
formed a reticulate network (Fig. 10f) or the vacuole was
large. The vacuole contained some membranous material
(Fig. 11c¢). In the periplasmic space (between the plasma-
lemma and the cell wall), there were vesicles. A large ac-
cumulation of vesicles and membranous material was
sometimes observed in the periplasmic space (Fig. 11a).
The fusion of a large vesicle that was connected to a vac-
uole that contained membranous material with plasmalem-
ma was also observed (Fig. 11b). In P. emarginata and
P. esseriana, the head cells were transfer cells; wall in-
growths occurred on the outer cell walls and on the trans-
verse cell walls (Fig. 11c, d). In P. esseriana, the cell wall
ingrowths were better developed (Fig. 11d) than in
P. emarginata (Fig. 11c).
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Fig. 9 Ultrastructure of the nectary trichomes of Pinguicula; a, b
P. emarginata ultrastructure of whole nectary trichome: the basal cell
(Be), stalk cell (Sc), pedestal cell (Pc), head (H); scale bar=2.7 pm and
scale bar=3.4 um. ¢ P. moctezumae ultrastructure of the basal (Bc) and
stalk cells (Sc): the cuticle of basal cell (arrow), plasmodesmata (red
circle), vacuole (V); scale bar = 1.6 um. d—e P. moctezumae ultrastructure
of the trichome cells; note that the lateral cell wall of the pedestal cell (Pc)
was heavily impregnated with cutin (star): nucleus (N), vacuole (V),
plasmodesmata (red circle), impregnation with cutin in a fragment of

Discussion

The results presented here show a conservative nectary tri-
chome structure and spur anatomy in different Pinguicula
species from Mexico. These similarities might stem from the
fact that the examined species are closely related; thus, some
traits may represent synapomorphies for the group. They are
grouped into one clade—Mexican-Central American-
Caribbean Clade I (Cieslak et al. 2005). From examined spe-
cies, pollinators (butterflies) were recorded only for
P. moranensis (Villegas and Alcala 2018); however, flower

@ Springer

the transverse walls between the stalk cell and the pedestal cell (C), head
cell (He), stalk cell (Sc); scale bar=1.6 um and scale bar=0.8 um. f
P. moctezumae accumulation of lipid bodies (L) in the pedestal cell:
pedestal cell (Pc), head cell (Hc), impregnation with cutin in a fragment
of the transverse walls between the pedestal cell and head cell (white star);
scale bar=0.8 um. g P. moranensis. Accumulation of lipid bodies (L) in
the pedestal cell: mitochondria (M), plasmodesmata (red circle) between
the pedestal cell and head cells, the lateral cell wall of the pedestal cell
impregnated with cutin (star); scale bar =0.9 um

structure (coloured flowers with long and thin spurs) suggests
that also other examined species are pollinated by butterflies.

The gross structural similarities between the species that
were examined were as follows: the spur anatomy, the occur-
rence of papillae, the architecture of the nectary trichomes and
the ultrastructure characters of the trichome cells. However,
there were some differences in the spur length (Fig. 1), the size
of trichomes in the spurs, the occurrence starch grains in the
spur parenchyma (they were not detected in P. moranensis)
and the occurrence of cell wall ingrowths in the terminal cells
of the nectary trichomes. In the nectaries, starch reserves are
utilised as a source of carbohydrates to produce nectar (Nepi
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Fig. 10 Ultrastructure of head
cells of the Pinguicula nectary
trichomes. a, b Ultrastructure of
the head cells of P moranensis:
head cell (He), pedestal cell (Pc),
subcuticular space (Sc), cuticle
(C), polysaccharide fibrillary
network in the cuticle layer (red
eclipsed); scale bar=1.7 pm and
scale bar=1 pum. ¢, d
Ultrastructure of the head cells of
P. moctezumae; note the
numerous mitochondria some of
which are cup-shaped (arrow),
lipid droplets (L), plastids with
starch (S), nucleus (N); scale
bar= 1 um and scale bar=

1.1 um. e A part of a section
through the head cell of

P. emarginata; note the cup-
shaped plastid, inclusion in plas-
tid (star), mitochondria with well-
developed cristae (M), small dic-
tyosomes (red arrow), vacuole
(V); scale bar=1.1 um. f A re-
ticulate vacuole in the head cell of
P. moctezumae: vacuole (V), mi-
tochondria (M); scale bar =

0.8 pm

2007); thus, the variations in the amount of starch among the
examined Pinguicula species, as well as the lack of starch in
the spurs of P moranensis, might be caused by its hydrolysis.
We noted correlation between the length of the spur tri-
chomes and the width of their heads. The species that had
longest trichome stalk have also the largest diameter of tri-
chome heads (P, esseriana and P. moranensis). It is interesting
that the spur trichomes length and their head diameter were
not correlated with the size of flowers (also spur length).
Pinguicula rectifolia with large flowers had trichome sizes
similar to P. emarginata, which had small flowers. We found
a clear difference in the length of the spur trichomes as well as
the width of their heads between P. moranensis and
P. rectifolia. This characters may be an important diagnostic
feature helpful in the determination of these species, especial-
ly that some authors included P. rectifolia in P. moranensis
complex (e.g. Roccia et al. 2016); however, future analysis of
more plant material from different populations is needed.
The spur anatomy of the Pinguicula that were examined
here is very similar to Utricularia (Ptachno et al. 2016, 2017,
2018, 2019Db, c). In both genera, there are collateral vascular

bundles in the nectaries (spurs). Papillose surfaces of the in-
ternal spur epidermis occur in the spurs of all Lentibulariaceae
genera (Utricularia—Clivati et al. 2014; Plachno et al. 2016,
2017, 2018; Genlisea—Aranguren et al. 2018). However,
there is variability in the case of the occurrence of cuticular
striations among the species.

Stomata are described on the surfaces of the internal spur
epidermis for Lentibulariaceae for first time. In many plants,
nectaries with modified stomata (‘nectarostomata’) occur,
which are used to release nectar (e.g. Davis and Gunning
1992; Davies et al. 2005; Wist and Davis 2006; Nepi 2007,
Pacini and Nepi 2007). In some species, nectar is secreted by
both trichomes and modified stomata in spur in the same plant
(e.g. in Tropaeolun majus; Rachmilevitz and Fahn 1975).
However, there are glandular parenchyma in these nectaries
that produce nectar. In the examined flowers of Pinguicula,
the spur parenchyma cells are not glandular; thus, the stomata
probably do not participate in the release of nectar. Explaining
their function requires further research.

Similar nectary capitate trichomes, as are described here,
have been recorded in the spurs of various Utricularia species
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.

Fig. 11 Ultrastructure of the head cells of the Pinguicula nectary
trichomes. a Ultrastructure of the head cell of P moranensis; note the
large accumulation of membranous material in the periplasmic space (red
eclipsed): nucleus (N), nucleolus (nu), paracrystalline protein inclusion
(In); scale bar = 0.8 um. b Ultrastructure of the head cell of P. emarginata;
note the fusion of the large vesicle connected to the vacuole, which

(Farooq 1963; Farooq and Siddiqui 1966; Clivati et al. 2014;
Plachno et al. 2016, 2017, 2018, 2019b, ¢) and Genlisea
violacea (Aranguren et al. 2018). Unfortunately, there are no
published data about the ultrastructure of the nectary tri-
chomes in Genlisea. The ultrastructural similarities between
the nectary trichomes in Pinguicula and Utricularia are as
follows: a highly vacuolated basal cell, and sometimes, also
a stalk cell; a pedestal with impregnated with cutin radial wall
(Casparian strip); in the terminal cells: the dense cytoplasm
contains large amount of organelles—numerous mitochondria
and multi-shaped plastids (which evidence a highly metabolic
function); a paracrystalline protein inclusion in the nucleus
and the occurrence of cell wall ingrowths, a thick cuticle and
a subcuticular space for accumulating nectar. The ultrastruc-
ture characters of the Pinguicula nectary trichome terminal
cells are typical for nectaries (see Nepi 2007; Pacini and
Nepi 2007).

In the cuticular layer of head cells in the examined
Pinguicula, there were polysaccharide micro-canals, which
are hydrophilic pathways that most probably form pathways
for the release of secretions (Paiva 2016, 2017). Such a
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contains membranous material, with plasmalemma (arrow); endoplasmic
reticulum (Er), vacuole (V); scale bar=0.5 um. ¢ Ultrastructure of the
head cells of P. emarginata; note the small cell wall ingrowths (red ar-
rows); cup-shaped plastid (P); scale 1 bar = um. d Ultrastructure of the
head cells of P. esseriana; note the well-developed cell wall ingrowths
(red arrows); scale bar=0.9 um

structure has been described in the cells of various nectary
types in many species (e.g. Stpiczynska 2003; Wist and
Davis 2006; Rocha and Machado 2009; Anton and
Kaminska 2015; Weryszko-Chmielewska and Chwil 2016)
as well as in other plant glandular structures—osmophores
(Garcia et al. 2007; Ptachno et al. 2010; Kowalkowska et al.
2012, 2014, 2017; Paiva et al. 2019), collectors (Tresmondi
et al. 2017) and trichomes, which produce a lipophilic secre-
tion (Machado et al. 2017; Muravnik et al. 2019).
Interestingly, we found polysaccharide micro-canals in the
cuticular layer of the spur papillae. These structures were re-
corded in the spur papillae of Utricularia (Ptachno et al.
2016). However, in both Pinguicula and Utricularia, the pa-
pillae in the mature spur are not glandular. Therefore, we
speculate that the occurrence of these micro-canals may indi-
cate that the papillae participate in the reabsorption of nectar.

We observed lipid droplets in the cytoplasm in the nectary
trichome cells. Lipid droplets have previously been recorded
in the cytoplasm in the nectary trichome cells of Utricularia
multifida (Ptachno et al. 2019¢). Machado et al. (2017) pro-
posed that the occurrence of lipid droplets in the cytoplasm in
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the nectary cells might indicate that the nectar is enriched with
lipids. However, we observed a large accumulation of lipid
droplets in the pedestal cells, which play the role of barrier
cells. A similar accumulation of lipids was recorded in the
pedestal cells of trichomes of Utricularia turions (Ptachno
et al. 2014), and therefore, the occurrence of lipid droplets in
the pedestal cells might not be directly connected with the
secretion of nectar.

Ptachno et al. (2018, 2019c) proposed that the nectar secre-
tion in Utricularia occurs via an eccrine mode. This type of
nectar secretion probably occurs in P. esseriana due to its
well-developed cell wall ingrowths. However, in other
Pinguicula species (P. moctezumae, P. moranensis) that have
been examined, there are no cell wall ingrowths in the nectary
glandular cells or, if they are present, they are very weakly
developed (P. emarginata). In these species, we observed ma-
terial in the periplasmic space as well as the fusion of a large
vesicle that was connected to the vacuole that contained mem-
branous material with the plasmalemma (Fig. 11b). Paiva
(2016) proposed cyclic mechanical actions of the protoplast
in the secretory cells, which “in the form of successive cycles
of contraction and expansion, causes the material accumulated
in the periplasmic space to cross the cell wall and the cuticle”
(Pavia 2016, pg. 533). He proposed that during the fusion of
the vacuolar and plasma membranes, the vacuolar content is
released into the periplasmic space. Thus, we speculate that in
some Pinguicula species, the secretion of nectar may occur
via a mode other than the eccrine mode. However, this prob-
lem requires further research, including studies of the various
stages of the development of the nectary Pinguicula
trichomes.

To conclude, we show that both the nectary trichome struc-
ture and the spur anatomy in different Pinguicula species from
Mexico are conservative. Similar nectary capitate trichomes,
as are described here, have been recorded in the spurs of
species from other Lentibulariaceae genera. There are many
ultrastructural similarities between the nectary trichomes in
Pinguicula and Utricularia.
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