9 research outputs found

    Sistemas microfuidicos de gotas para incorporaçao de acidos nucleicos em lipossomas cationicos e para transfecçao in vitro de células de mamiferos

    Get PDF
    Orientadores: Lucimara Gaziola de la Torre, Charles BaroudTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química, École Polytechnique - FrançaResumo: Este trabalho visou o uso de um sistema microfluídico de gotas para incorporar ácidos nucleicos em lipossomas catiônicos e outro para estudar o processo de transfecção em células de mamíferos. A primeira etapa do projeto utilizou um microdispositivo para incorporar pDNA em lipossomas catiônicos de modo a obter lipoplexos reprodutíveis e adequados para transfectar células dendríticas (DCs). Com esta finalidade, alguns parâmetros experimentais foram investigados, tais como vazões de entrada, manutenção das propriedades dos lipossomas após processamento no microdispositivo, características dos lipoplexos (tamanho, polidispersidade e carga) em função da razão molar de carga (R+/-) e do desenho do microdispositivo. Lipoplexos produzidos em microdispositivo com canal de serpentina largo e região de divisão de gotas que diminuem a polidispersidade dos lipoplexos, operando à razão de vazão água/óleo 0,25 e R+/- 1,5; 3; 5; 7 e 10 foram utilizados para transfectar DCs in vitro. Todos os lipoplexos foram capazes de transfectar as DCs e ao mesmo tempo proporciaonar a ativação das células. A segunda etapa do trabalho utilizou uma plataforma microfluídica de célula única para investigar e controlar as condições de transfecção, tendo em vista a otimização dos rendimentos de produção de proteínas recombinantes. Neste contexto, as células de ovário de hamster Chinês (CHO-S) foram transfectadas no microdispositivo com diferentes tipos de lipoplexos (R+/- 1,5; 3; 5) e monitoradas em relação à produção de proteína verde fluorescente (GFP) e viabilidade celular. A plataforma de célula única permite avaliar a heterogeneidade celular, revelando a presença de uma subpopulação que produz níveis elevados de GFP. Essas células com alta produção de GFP (HP) mostraram um aumento do tamanho celular em comparação à média da população. Além disso, a carga dos lipoplexes apresenta um importante papel na transfecção das células CHO-S, visto que os únicos lipoplexos com carga positiva R+/- 5 produziram mais HPs. A quantidade de pDNA entregue às células afeta a produção de proteína, já que os lipoplexos com mais pDNA R+/- 1,5 aumentaram a produtividade específica de GFP das HPs. Esta tese foi desenvolvida no âmbito de um programa de co-tutela entre a Universidade Estadual de Campinas, Brasil e a École Polytechnique, França. Em geral, este trabalho apresenta contribuições originais para as áreas da microfluídica e da entrega de genesAbstract: This work aimed at using one droplet-based microfluidic systems to incorporate nucleic acids into cationic liposomes and another one to study the mammalian cell transfection process. In the first part of this study we used a droplet-based microfluidic system to complex cationic liposomes with pDNA in order to obtain reproducible and suitable lipoplexes to dendritic cells (DCs) transfection. For this purpose, some experimental parameters were investigated, such as inlet flow rates, the maintenance of liposomes¿ properties after microfluidic processing, lipoplex characteristics (size, polydispersity and zeta potential) as function of molar charge ratio (R+/-) and microchip design. Lipoplexes produced in a microchip with large serpentine channel and split region, which decreases lipoplex polydispersity, operating at ratio aqueous/oil flow rate 0.25 and R+/- 1.5, 3, 5, 7 and 10 were used to transfect DCs in vitro. All lipoplexes transfected DCs and resulted in cell activation. In the second part of this study we used a single-cell microfluidic platform to investigate and control transfection conditions, in view of optimizing the recombinant protein production by transfected cells. Chinese hamster ovary cells (CHO-S) were transfected in microchip with different types of lipoplexes (R+/- 1.5, 3, 5) and monitored by green fluorescent protein (GFP) production and cell viability. The single-cell platform enables to assess the heterogeneities of CHO-S population, revealing the presence of a subpopulation producing significantly high levels of GFP. These high producers (HP) showed increased cell size in comparison to the average population. Moreover, the charge of lipoplexes shows an important role to transfect CHO-S, since the unique positive charged lipoplex R+/- 5 produced more HPs. Additionally, the amount of pDNA delivered affects protein production, since R+/- 1.5 with more pDNA increased GFP specific productivity of HPs. This thesis was developed under the joint graduate program of the University of Campinas, Brazil and École Polytechnique, France. In general, this work presents original contributions in the areas of microfluidics and gene deliveryDoutoradoDesenvolvimento de Processos BiotecnologicosDoutora em Engenharia Quimica2012/24797-2, 2014/10557-5FAPES

    Tracking the evolution of transiently transfected individual cells in a microfluidic platform

    Get PDF
    Transient gene expression (TGE) technology enables the rapid production of large amount of recombinant proteins, without the need of fastidious screening of the producing cells required for stable transfection (ST). However, several barriers must be overcome before reaching the production yields using ST. For optimizing the production yields from suspended cells using TGE, a better understanding of the transfection conditions at the single cell level are required. In this study, a universal droplet microfluidic platform was used to assess the heterogeneities of CHO-S population transiently transfected with cationic liposomes (CL) (lipoplexes) complexed with GFP-coding plasmid DNA (pDNA). A single cell analysis of GFP production kinetics revealed the presence of a subpopulation producing higher levels of GFP compared with the main population. The size of high producing (HP) cells, their relative abundance, and their specific productivity were dependent on the charge and the pDNA content of the different lipoplexes: HPs showed increased cell size in comparison to the average population, lipoplexes with positive charge produced more HPs, and lipoplexes carrying a larger amount of pDNA yielded a higher specific productivity of HPs. This study demonstrates the potential for time-resolved single-cell measurements to explain population dynamics from a microscopic point of view8CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP202086/2015-12014/24797-2; 2014/10557-5; 2015/26701-

    Cationic liposomes as carriers of mRNA from tumor cells for cancer immunotherapy

    No full text
    Orientadores: Lucimara Gaziola de la Torre, Patrícia Cruz Bergami-SantosO texto da introdução e conclusão estão na lingua portuguesaDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia QuímicaResumo: Esta pesquisa teve como objetivo o desenvolvimento tecnológico de uma vacina lipossomal contendo RNA tumoral destinado à imunoterapia do câncer. Nesta estratégia, RNA total codificando o antígeno tumoral Her-2/neu extraído de linhagem de células de adenocarcinoma de mama humano SK-BR-3 foram incorporados em lipossomas catiônicos introduzidos in vitro em células dendríticas (DCs). A vacina de DCs tem a função de auxiliar o sistema imunológico a identificar antígenos tumorais para que as células cancerígenas sejam eliminadas. Porém uma das etapas críticas é a introdução (transfecção) de RNA nas DCs. Lipossomas catiônicos é uma alternativa promissora, pois além de ativarem as DCs, é capaz mediar a transfecção de ácidos nucléicos para células. A experiência prévia do grupo de pesquisa na área de lipossomas catiônicos mostrou a possibilidade da obtenção de lipossomas em larga escala para o desenvolvimento de vacina de DNA contra a tuberculose. Neste contexto, este trabalho avaliou os lipossomas catiônicos com a composição lipídica de fosfatidilcolina natural de ovo (EPC), 1,2-dioleoil-sn-glicero-3-fosfatidiletanolamina (DOTAP) e 1,2-dioleoil-3-trimetilamônio-propano (DOPE), na respectiva proporção molar de 50/25/25%. Metodologicamente, o trabalho foi dividido em quatro partes: na primeira parte foi apresentada uma visão geral do trabalho desenvolvido, demonstrando o potencial dos lipossomas catiônicos complexados com RNA na imunoterapia do câncer. Na segunda parte do trabalho investigaram-se os efeitos dos lipossomas produzidos através do processo laboratorial na diferenciação/maturação das DCs in vitro e as DCs estimuladas por estes lipossomas, na indução da proliferação de linfócitos T, resultando em lipossomas catiônicos incorporados pelas DCs, com a capacidade de ativar as DCs in vitro e de induzir proliferação de linfócitos T. A terceira parte do trabalho teve como finalidade a otimização da produção dos lipossomas catiônicos obtidos através do método de injeção de etanol utilizando a ferramentas estatísticas, obtendo lipossomas com menor polidispersidade e tamanho, que demonstraram in vitro serem incorporadas e ativarem as DCs e induzirem a proliferação de linfócitos T. A última etapa refere-se ao estudo da incorporação do RNA nos lipossomas catiônicos produzidos através do processo escalonado otimizado e comparado com o laboratorial no intuito de serem internalizados pelas DCs, transfectar o RNA e induzir a proliferação de linfócitos T através das DCs. Os resultados demonstraram que os complexos foram internalizados pelas DCs e que estas são capazes de induzir a proliferação de linfócitos T, porém há necessidade de se obter a condição ótima de transfecção. Dessa forma, conclui-se que os lipossomas catiônicos em questão têm potencial para serem usados como ferramenta em futuras estratégias na imunoterapia do câncerAbstract: This research aimed at the technological development of a liposomal vaccine containing tumor RNA for cancer immunotherapy. In this strategy, total RNA encoding the Her-2/neu tumor antigen extracted from cell line of human breast adenocarcinoma SK-BR-3 were incorporated into cationic liposomes, which were introduced in vitro into dendritic cells (DCs). DCs vaccine has the function of helping the immune system to identify tumor antigens in order to eliminate cancerous cells. However, one of the critical steps is the introduction (transfection) of RNA in DCs. Cationic liposomes are a promising alternative, because besides activating DCs, they are able to mediate transfection of nucleic acids into cells. Previous work of our research group in the cationic liposomes field developed a liposomal nanostructure obtained by a scale up process containing DNA vaccine against tuberculosis. In this context, this work evaluated the cationic liposomes composed by egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and 1,2-dioleoylphosphatidylethanolamine (DOPE), at 50/25/25% molar proportion respectively. Methodologically, the present work was carried out in four mean steps: in the first step, it was carried out an overview of all work, showing the relevancy of cationic liposomes complexed with RNA for cancer immunotherapy. The second part of this work investigated the effects of liposomes produced via laboratory process upon DCs differentiation/maturation in vitro and induction of T lymphocytes proliferation by DCs stimulated with these liposomes, resulting in cationic liposomes incorporated by DCs, capable to activate DCs in vitro and to induce proliferation of T lymphocytes. The third part of the work aimed at optimizing the production of cationic liposomes obtained via the ethanol injection method using statistical tools, obtaining liposomes with smaller size and polydispersity, which demonstrated to be incorporated and activate DCs in vitro and to induce T lymphocytes proliferation. The last step refers to the study of RNA incorporation in the cationic liposomes produced via optimized scalable process compared to the laboratory process in order to be internalized by DCs, transfected RNA and to induce T lymphocytes proliferation by DCs. The results showed that the complexes were internalized by DCs and they are able to induce T lymphocytes proliferation, however we still have to obtain the optimal transfection condition. In sum, we conclude that the cited cationic liposomes can be used as a potential tool in further strategies in cancer immunotherapyMestradoDesenvolvimento de Processos BiotecnologicosMestra em Engenharia Químic

    Tracking the Evolution of Transiently Transfected Individual Cells in a Microfluidic Platform

    No full text
    Abstract Transient gene expression (TGE) technology enables the rapid production of large amount of recombinant proteins, without the need of fastidious screening of the producing cells required for stable transfection (ST). However, several barriers must be overcome before reaching the production yields using ST. For optimizing the production yields from suspended cells using TGE, a better understanding of the transfection conditions at the single cell level are required. In this study, a universal droplet microfluidic platform was used to assess the heterogeneities of CHO-S population transiently transfected with cationic liposomes (CL) (lipoplexes) complexed with GFP-coding plasmid DNA (pDNA). A single cell analysis of GFP production kinetics revealed the presence of a subpopulation producing higher levels of GFP compared with the main population. The size of high producing (HP) cells, their relative abundance, and their specific productivity were dependent on the charge and the pDNA content of the different lipoplexes: HPs showed increased cell size in comparison to the average population, lipoplexes with positive charge produced more HPs, and lipoplexes carrying a larger amount of pDNA yielded a higher specific productivity of HPs. This study demonstrates the potential for time-resolved single-cell measurements to explain population dynamics from a microscopic point of view

    Dendritic cells stimulated by cationic liposomes

    No full text
    Immunotherapy of cancer aims to harness the immune system to detect and destroy cancer cells. To induce an immune response against cancer, activated dendritic cells (DCs) must present tumor antigens to T lymphocytes of patients. However, cancer patients’ DCs are frequently defective, therefore, they are prone to induce rather tolerance than immune responses. In this context, loading tumor antigens into DCs and, at the same time, activating these cells, is a tempting goal within the field. Thus, we investigated the effects of cationic liposomes on the DCs differentiation/maturation, evaluating their surface phenotype and ability to stimulate T lymphocytes proliferation in vitro. The cationic liposomes composed by egg phosphatidylcholine, 1,2-dioleoyl-3-trimethylammonium propane and 1,2-dioleoylphosphatidylethanolamine (50/25/25% molar) were prepared by the thin film method followed by extrusion (65 nm, polydispersity of 0.13) and by the dehydration–rehydrationmethod (95% of the population 107 nm, polydispersity of 0.52). The phenotypic analysis of dendritic cells and the analysis of T lymphocyte proliferation were performed by flow cytometry and showed that both cationic liposomes were incorporated and activated dendritic cells. Extruded liposomes were better incorporated and induced higher CD86 expression for dendritic cells than dehydrated–rehydrated vesicles. Furthermore, dendritic cells which internalized extruded liposomes also provided stronger T lymphocyte stimulation. Thus, cationic liposomes with a smaller size and polydispersity seem to be better incorporated by dendritic cells. Hence, these cationic liposomes could be used as a potential tool in further cancer immunotherapy strategies and contribute to new strategies in immunotherapy161270279FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informaçã

    Cationic liposomes produced via ethanol injection method for dendritic cell therapy

    No full text
    Cationic liposomes can be designed and developed in order to be an efficient gene delivery system for mammalian cells. Dendritic cell (DC) vaccines can be used to treat cancer, as cationic liposomes can deliver tumor antigens to cells while cells remain active. However, most methods used for liposome production are not able to reproduce in large scale the physicochemical and biological properties of liposomes produced in laboratory scale. In this context, ethanol injection method achieved promising results, although requiring post-treatment for size reduction and/or to remove residual ethanol. Thus, the purpose of this study was to generate cationic liposomes suitable for gene therapies via ethanol injection method in only one step (VEI) and compared to those submitted to a size reduction processes by microfluidization (MFV). For this, the method to produce cationic liposomes composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and 1,2-dioleoylphosphatidylethanolamine (DOPE) was optimized using a statistical design approach. As a result, the size of VEI decreased from 290 nm to 110 nm and the polydispersity from 0.54 to 0.17. In the case of MFV, size decreased from 128 nm to 107 nm and polydispersity from 0.40 to 0.18. ST and MFV before and after optimization were also characterized in terms of morphology by transmission electron microscopy (TEM) and structure by differential scanning calorimetry (DSC). Finally, to show their potential in gene/immune therapies applications, DCs were stimulated by such liposomes. Cells internalized liposomes, increasing expression of the costimulatory molecule CD86 and inducing T lymphocyte proliferation274249263FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informaçã

    Cationic liposomes produced via ethanol injection method for dendritic cell therapy

    No full text
    <p>Cationic liposomes can be designed and developed in order to be an efficient gene delivery system for mammalian cells. Dendritic cell (DC) vaccines can be used to treat cancer, as cationic liposomes can deliver tumor antigens to cells while cells remain active. However, most methods used for liposome production are not able to reproduce in large scale the physicochemical and biological properties of liposomes produced in laboratory scale. In this context, ethanol injection method achieved promising results, although requiring post-treatment for size reduction and/or to remove residual ethanol. Thus, the purpose of this study was to generate cationic liposomes suitable for gene therapies via ethanol injection method in only one step (VEI) and compared to those submitted to a size reduction processes by microfluidization (MFV). For this, the method to produce cationic liposomes composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and 1,2-dioleoylphosphatidylethanolamine (DOPE) was optimized using a statistical design approach. As a result, the size of VEI decreased from 290 nm to 110 nm and the polydispersity from 0.54 to 0.17. In the case of MFV, size decreased from 128 nm to 107 nm and polydispersity from 0.40 to 0.18. ST and MFV before and after optimization were also characterized in terms of morphology by transmission electron microscopy (TEM) and structure by differential scanning calorimetry (DSC). Finally, to show their potential in gene/immune therapies applications, DCs were stimulated by such liposomes. Cells internalized liposomes, increasing expression of the costimulatory molecule CD86 and inducing T lymphocyte proliferation.</p

    Proceedings of the 23rd Paediatric Rheumatology European Society Congress: part one

    No full text
    corecore